Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 522 - 534 2020-01-31

Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri
Powder Metallurgy Processing of Magnesium and Its Alloys

Azim GÖKÇE [1]


Bu çalışmada, günden güne daha geniş alanlarda kullanılan magnezyum tozmetal alaşımların endüstriyel uygulamalarda kullanılabilirliği incelenmiştir. Bu malzemenin hegzagonal sıkı paket kafes yapısından dolayı plastik deformasyonunda yaşanan zorlukları aşmak için geleneksel plastik deformasyon yöntemleri yerine toz metalurjisi yöntemi ile şekillendirilebilirliği hakkında literatürde bulunan çalışmalar derlenmiştir. Özellikle magnezyum partiküllerinin üretimi sürecinde oluşan yüzey oksidi tabakasının elimine edilmesi için kullanılabilecek yöntemlerle ilgili çalışmaların bulguları özetlenmiştir. Sonuç olarak press-sinter yöntemine göre daha sofistike yöntemler veya ikincil işlemler kullanılması durumunda döküm alaşımlarına göre daha yüksek dayanım gösteren Mg alaşımlarının üretiminin mümkün olduğu ve gelişen partikül malzeme üretim yöntemleri (Seçici lazer sinterleme, direkt enerji biriktirme gibi) ile birlikte yakın gelecekte tozmetal magnezyum alaşımlarının daha geniş alanlarda kullanılacağı öngörülmektedir. 

In this study, the usability of powder metal magnesium alloys in industrial applications was investigated. It is well known that there are difficulties in the plastic deformation of magnesium, due to its hexagonal closed package crystal structure. So it is thought that powder metallurgy can be used to overcome these aforementioned problems. Hence, the studies on the powder metallurgy processing of magnesium alloys were compiled. The findings of the studies on eliminating the surface oxide layer formed during the production of magnesium particles are summarized. As a result, when more sophisticated methods or secondary processes are used rather than press-sinter methods, it is possible to produce Mg alloys with higher strength than that of casted counterparts. Also, it is expected that in the near future along with the development of new kind of particulate material processing methods  (such as selective laser sintering, direct energy deposition) Mg alloys will be used in much greater amounts.

  • [1] US Department of Energy, “Global Transportation Energy Consumption: Examination of Scenarios to 2040 using ITEDD,” 2017. [Online]. Erişim: https://www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf
  • [2] M. Höök ve X. Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, c. 52, ss. 797–809, 2013.
  • [3] J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, “Biofuels: Environment, technology and food security,” Renewable and Sustainable Energy Reviews, c. 13, s. 6–7, ss. 1275–1287, 2009.
  • [4] P. Morone ve L. Cottoni, “Biofuels,” in Handbook of Biofuels Production, 2. baskı, R. Luque, C. Lin, K. Wilson, and J. Clark, Eds. Cambridge: Elsevier, 2016, ss. 61–83.
  • [5] A. Jambor ve M. Beyer, “New cars — new materials,” Materials & Design, c. 18, s. 4–6, ss. 203–209, 1997.
  • [6] “Light-Duty Automotive Technology , Carbon Dioxide Emissions , and Fuel Economy Trends : 1975 Through 2011,” 2014.
  • [7] M. L. Anderson ve M. Auffhammer, “Pounds that kill: The external costs of vehicle weight,” Review of Economic Studies, c. 81, s. 2, ss. 535–571, 2013.
  • [8] W. L. Dalmijn ve T. P. R. De Jong, “The development of vehicle recycling in Europe: Sorting, shredding, and separation,” JOM, c. 59, s. 11, ss. 52–56, 2007.
  • [9] A. I. Taub ve A. A. Luo, “Advanced lightweight materials and manufacturing processes for automotive applications,” MRS Bulletin, c. 40, s. 12, ss. 1045–1054, 2015.
  • [10] P. Seyfried, E. J. M. Taiss, A. C. Calijorne, F.-P. Li, and Q.-F. Song, “Light weighting opportunities and material choice for commercial vehicle frame structures from a design point of view,” Advances in Manufacturing, c. 3, s. 1, ss. 19–26, 2015.
  • [11] A. H. Musfirah ve A. . Jaharah, “Magnesium and Aluminum Alloys in Automotive Industry,” Journal of Applied Science Research, c. 8, s. 9, ss. 4865–4875, 2012.
  • [12] G. S. Cole ve A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, c. 35, s. 1, ss. 3–9, 1995.
  • [13] I. Polmear, D. StJohn, J. F. Nie, and M. Qian, “The Light Metals,” in Light Alloys, 5. baskı., Boston: Elsevier, 2017, ss. 1–29.
  • [14] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” The International Journal of Advanced Manufacturing Technology, c. 39, s. 9, ss. 851–865, 2008.
  • [15] W. Miller ve diğ. “Recent development in aluminium alloys for the automotive industry,” Materials Science and Engineering: A, c. 280, s. 1, ss. 37–49, 2000.
  • [16] I. Polmear, “Aluminium Alloys--A Century of Age Hardening,” Materials forum, c. 28, ss. 1–14, 2004.
  • [17] M. Easton, W. Qian Song, ve T. Abbott, “A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling,” Materials & Design, c. 27, s. 10, ss. 935–946, 2006.
  • [18] G. Yarkadaş, L. C. Kumruoğlu, ve H. Şevik, “The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy,” Materials Characterization, c. 136, s. November 2017, ss. 152–156, 2018.
  • [19] G. Germen, G. Yarkadaş, ve H. Şevik, “Influence of strontium addition on the wear behavior of Mg-3Al-3Sn alloys produced by gravity casting,” Materials Testing, c. 57, s. 11–12, ss. 997–1000, 2015.
  • [20] A. Gökçe, “Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting,” Metals and Materials International, 2019, DOI:10.1007/s12540-019-00539-1.
  • [21] S. Özarslan, H. Şevik, ve İ. Sorar, “Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting,” Materials Science and Engineering: C, c. 105, p. 110064, 2019.
  • [22] F. Bonollo, N. Gramegna, ve G. Timelli, “High-pressure die-casting: Contradictions and challenges,” Jom, c. 67, s. 5, ss. 901–908, 2015.
  • [23] B. L. Mordike ve T. Ebert, “Magnesium,” Materials Science and Engineering: A, c. 302, s. 1, ss. 37–45, 2001.
  • [24] A. Gökçe, F. Fındık, ve A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri - Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [25] R. M. German, Sintering: from Empirical Observations to Scientific Principles, Del Mar, CA, USA: Elsevier, 2014.
  • [26] “Economic considerations for powder metallurgy structural parts,” Powder Metallurgy Review. [Online]. Erişim: https://www.pm-review.com/introduction-to-powder-metallurgy/economic-considerations-for-powder-metallurgy-structural-parts/.
  • [27] T. Schubert ve diğ, “P/M aluminium structural parts for automotive application,” in Euro PM 2004, 2004, ss. 627–632.
  • [28] H. . Yao, Y. Li, ve A. T. . Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Applied Surface Science, c. 158, s. 1–2, ss. 112–119, 2000.
  • [29] P. Burke, C. Petit, S. Yakoubi, ve G. J. Kipouros, “Thermal Effects of Calcium and Yttrium Additions on the Sintering of Magnesium Powder,” Magnesium Technology 2011, ss. 481–484, 2016.
  • [30] P. Burke, “Investigation of the Sintering Fundamentals of Magnesium,” MS Thesis, Dept. of Process Engineering, Dalhousie University, Halifax, Canada, 2011.
  • [31] R. Yılmaz, A. Gökçe, ve H. Kapdıbaş, “The Effect of Ferro-Molybdenum Addition on the Microstructure and Mechanical Properties of Sintered Steel,” Advanced Materials Research, c. 23, ss. 71–74, 2007.
  • [32] A. Gökçe, F. Findik, ve A. O. Kurt, “Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy,” Practical Metallography, c. 54, s. 8, ss. 533–551, 2017.
  • [33] R. N. Lumley, T. B. Sercombe, ve G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminum,” Metallurgical and Materials Transactions A, c. 30, s. 2, ss. 457–463, 1999.
  • [34] P. Burke, J. Li, ve G. J. Kipouros, “DSC and FIB/TEM investigation of calcium and yttrium additions in the sintering of magnesium powder,” Canadian Metallurgical Quarterly, c. 55, s. 1, ss. 45–52, 2016.
  • [35] O. S. Gökçe, “Sıcak Pres ile Partikül Takviyeli Magnezyum Kompozitlerin Üretimi ve Kaplanması,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, Kocaeli Üniversitesi, Kocaeli, Turkey, 2018.
  • [36] N. Taşkın, “Magnezyum Talaşlarından Malzeme Üretimi,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, İstanbul Teknik Üniversitesi, İstanbul, Turkey, 2012.
  • [37] T. Iwaoka ve M. Nakamura, “Effect of Compaction Temperature on Sinterability of Magnesium and Aluminum Powder Mixtures by Warm Compaction Method,” Materials Transactions, c. 52, s. 5, ss. 943–947, 2011.
  • [38] M. Březina ve diğ., “Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications,” Metals, c. 7, s. 11, p. 461, 2017.
  • [39] P. Burke, G. J. Kipouros, D. Fancelli, ve V. Laverdiere, “Sintering Fundamentals of Magnesium Powders,” Canadian Metallurgical Quarterly, c. 48, s. 2, ss. 123–132, 2014.
  • [40] A. A. Nayeb-Hashemi ve J. B. Clark, “The Ca−Mg (Calcium-Magnesium) system,” Bulletin of Alloy Phase Diagrams, c. 8, s. 1, ss. 58–65, 1987.
  • [41] M. Wolff, T. Ebel, ve M. Dahms, “Sintering of magnesium,” Advanced Engineering Materials, c. 12, s. 9, ss. 829–836, 2010.
  • [42] Z. Li, X. Gu, S. Lou, ve Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, c. 29, s. 10, ss. 1329–1344, 2008.
  • [43] T. B. Abbott, M. A. Easton, ve C. H. Caceres, “Designing with Magnesium,” in Handbook of Mechanical Alloy Design, s. September, G. E. Totten, L. Xie, and K. Funatani, Eds. CRC Press, 2004, ss. 487–538.
  • [44] H. Westengen, “Magnesium alloys for structural applications ; recent advances,” Le Journal de Physique IV, c. 03, s. C7, ss. C7-491-C7-501, 1993.
  • [45] L. Lu, C. Y. H. Lim, ve W. M. Yeong, “Effect of reinforcements on strength of Mg9%Al composites,” Composite Structures, c. 66, s. 1–4, ss. 41–45, 2004.
  • [46] C. Moosbrugger, Ed., Engineering Properties of Magnesium Alloys, 1. baskı, Ohio, USA: ASM International, 2017.
  • [47] A. Gökçe, F. Findik, ve A. O. Kurt, “Sintering and aging behaviours of Al4CuXMg PM alloy,” Canadian Metallurgical Quarterly, c. 55, s. 4, ss. 391–401, 2016.
  • [48] D. Singh, C. Suryanarayana, L. Mertus, ve R.-H. Chen, “Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys,” Intermetallics, c. 11, s. 4, ss. 373–376, 2003.
  • [49] W. Xie, Y. Liu, D. S. Li, J. Zhang, Z. W. Zhang, ve J. Bi, “Influence of sintering routes to the mechanical properties of magnesium alloy and its composites produced by PM technique,” Journal of Alloys and Compounds, c. 431, s. 1–2, ss. 162–166, 2007.
  • [50] J. Chen, C.-G. Bao, Y. Wang, J.-L. Liu, ve C. Suryanarayana, “Microstructure and Lattice Parameters of AlN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy,” Acta Metallurgica Sinica (English Letters), c. 28, s. 11, ss. 1354–1363, 2015.
  • [51] X. Niu, H. Shen, ve J. Fu, “Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture,” Materials Letters, c. 221, ss. 4–7, 2018.
  • [52] X. Niu, H. Shen, G. Xu, L. Zhang, J. Fu, ve X. Deng, “Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused magnesium-aluminium (0, 3, 6, 9wt%) powder mixture,” Rapid Prototyping Journal, p. RPJ-08-2018-0213, 2019.
  • [53] E. A. Nyberg, S. R. Agnew, N. R. Neelameggham, ve M. O. Pekguleryuz, Magnesium Technology 2009. Wiley, 2009.
  • [54] K. Kondoh, E.-S. A. Hamada, H. Imai, J. Umeda, ve T. Jones, “Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production,” Materials & Design, c. 31, s. 3, ss. 1540–1546, 2010.
  • [55] L. Hou et al., “Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy,” Journal of Materials Science & Technology, c. 33, s. 9, ss. 947–953, 2017.
  • [56] M. Razavi, M. H. Fathi, ve M. Meratian, “Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications,” Materials Science and Engineering: A, c. 527, s. 26, ss. 6938–6944, 2010.
  • [57] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, ve T. Grosdidier, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering,” Acta Materialia, c. 119, ss. 55–67, 2016.
  • [58] M. Rashad, F. Pan, M. Asif, ve A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, c. 20, s. 6, ss. 4250–4255, 2014.
  • [59] P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, ve R. Král, “AE42 magnesium alloy prepared by spark plasma sintering,” Journal of Alloys and Compounds, c. 742, ss. 172–179, 2018.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-2286-3259
Yazar: Azim GÖKÇE (Sorumlu Yazar)
Kurum: SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2020

Bibtex @derleme { dubited569098, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {}, publisher = {Düzce Üniversitesi}, year = {2020}, volume = {8}, pages = {522 - 534}, doi = {10.29130/dubited.569098}, title = {Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri}, key = {cite}, author = {Gökçe, Azim} }
APA Gökçe, A . (2020). Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri . Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 8 (1) , 522-534 . DOI: 10.29130/dubited.569098
MLA Gökçe, A . "Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri" . Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 522-534 <https://dergipark.org.tr/tr/pub/dubited/issue/49725/569098>
Chicago Gökçe, A . "Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 522-534
RIS TY - JOUR T1 - Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri AU - Azim Gökçe Y1 - 2020 PY - 2020 N1 - doi: 10.29130/dubited.569098 DO - 10.29130/dubited.569098 T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 522 EP - 534 VL - 8 IS - 1 SN - -2148-2446 M3 - doi: 10.29130/dubited.569098 UR - https://doi.org/10.29130/dubited.569098 Y2 - 2019 ER -
EndNote %0 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri %A Azim Gökçe %T Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri %D 2020 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 8 %N 1 %R doi: 10.29130/dubited.569098 %U 10.29130/dubited.569098
ISNAD Gökçe, Azim . "Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 / 1 (Ocak 2020): 522-534 . https://doi.org/10.29130/dubited.569098
AMA Gökçe A . Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. DÜBİTED. 2020; 8(1): 522-534.
Vancouver Gökçe A . Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 522-534.