Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 974 - 982 2020-01-31

Kolin Tespiti İçin Moleküler Baskılama Tabanlı Biyosensör Geliştirilmesi
Molecularly Imprinted Polymer Based Biosensor for Choline

Melahat Sevgül Sevgül BAKAY [1] , Tuğçe POLAT [2] , Adil DENİZLİ [3] , Feride Şermin UTKU [4]


Biyolojik sensörün kısaltması olarak kullanılan biyosensörler, maddelerin sıvı ya da gaz ortamda nicel veya nitel tayinini sahip olduğu biyolojik tanıma bölgeleri sayesinde yapabilen ve elde ettiği verileri tespit edilebilir sinyallere çeviren sistemlerdir. Biyosensörler, uygun tanıma bölgeleri aracılığıyla fiziksel değişiklikleri (yoğunluk, kütle, derişim vb.) tespit edebilmekte ve bunları elektriksel veya optik büyüklüklerle (akım, gerilim, empedans vb.) ilişkilendirmektedir. Bu çalışmada, E-1M, E-3M ve E-5M olmak üzere 3 farklı derişimde moleküler baskılanmış, farklı sayıda kolin tanıma bölgelerine sahip, kalem grafit elektrotlar (PGE), elektrokimyasal biyosensörler olarak kullanılmıştır. Elektrot yüzeyindeki kolin reseptörü konsantrasyonundaki artışın, PGE yüzeyine bağlı kolindeki artışla ilişkili olması ve dolayısıyla elektriksel değişikliklere yol açması beklenmektedir. Çalışma, üç elektrotlu hücrede, referans elektrot olarak Ag/AgCl,  karşı elektrot olarak platin tel ve çalışma elektrotu olarak PGE kullanılarak gerçekleştirilmiştir. Elektrotların açık hücre potansiyeli, dönüşümsel voltametri ve elektrokimyasal empedans ölçümleri, 5mM K3[FeCN6]-3/-4 redoks çifti içeren 10 mM fosfat tampon çözeltisi (PBS) içerisinde alınmıştır. Çözelti içerisindeki kolinin, kolin baskılanmış PGE'ler üzerindeki tamamlayıcı tanıma alanlarına bağlanmasıyla beklendiği gibi PGE'lerde akım, voltaj ve empedans değişimleri gözlenmiştir. Baskılanan molekül konsantrasyonunun artışıyla bağıntılı olarak tespit aralığında da bir artış gözlenmiştir. Sonuç olarak, E-1M kolin baskılanan PGE, 7.2 nM-72 pM tespit aralığındaki kolin konsantrasyonunda en yüksek farklılaşmayı göstermiştir.

Biosensors are systems that can perform a quantitative and/or qualitative analysis of substances in a liquid or gas environment through their biological recognition sites and transform the acquired data into detectable signals. Biosensors are able to detect physical changes (i.e. as density, mass concentration, etc.) by means of recognition sites and correlate them with electrical or optical quantities (i.e. current, voltage and impedance). In this study, three molecularly imprinted pencil graphite electrodes (PGE) with differing numbers of choline recognition sites, at E-1 M, E-3 M and E-5 M concentration, were used as electrochemical biosensors. An increase in choline receptor concentration on the electrode surface was expected to correlate with an increase in PGE surface bound choline and thus lead to electrical changes. The study was conducted in a three-electrode cell with Ag/AgCl as the reference electrode, platinum wire as the counter electrode and PGE as the working electrode. Cyclic voltammetry and electrochemical impedance measurements were conducted in 10 mM phosphate buffer solution (PBS) containing 5mM K3[FeCN6]-3/-4 redox pair. As expected, as increasing amount of choline was bound to the complementary recognition sites on choline imprinted PGEs, a correlating change in current, voltage and impedance on PGEs was observed. The dynamic detection range for choline expanded as the choline concentration imprinted on the PGE electrode increased. Using the E-1 M PGE electrode, 72 pM limit of detection, up to 7.2 nM limit of linearity was attained.

  • [1] N. Bhalla, P. Jolly, N. Formisano & P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, pp. 1-8, 2016.
  • [2] C. I. Justino, A. C. Freitas, R. Pereira, A. C. Duarte, & T. A. R. Santos, ‘’Recent developments in recognition elements for chemical sensors and biosensors,’’ TrAC Trends in Analytical Chemistry, no. 68, pp. 2-17, 2015.
  • [3] N. Verma, & A. Bhardwaj, ‘’Biosensor technology for pesticides—a review,’’ Applied Biochemistry And Biotechnology, vol. 175, no. 6, pp. 3093-3119, 2015.
  • [4] R. Gui, H. Jin, H. Guo, & Z. Wang, ‘’Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors,’’ Biosensors and Bioelectronics, no. 100, pp. 56-70.,2018.
  • [5] R. Li, Y. Feng, G. Pan, & L. Liu, ‘’Advances in molecularly imprinting technology for bioanalytical applications,’’ Sensors, vol. 19, no. 1, p. 177, 2019.
  • [6] N. Fu, X. Liu, L. Li, B. Tang, & K. H. Row, ‘’Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer,’’ Journal of Separation Science, vol. 40, no. 10, pp. 2286-2291, 2017.
  • [7] G. Ertürk, H. Özen, M. A. Tümer, B. Mattiasson & A. Denizli, “Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples,” Sensors and Actuators B: Chemical, vol. 224, pp. 823-832, 2016.
  • [8] J. M. Moon, N. Thapliyal, K. K. Hussain, R. N. Goyal, & Y. B. Shim, ‘’Conducting polymer-based electrochemical biosensors for neurotransmitters: A review,’’ Biosensors and Bioelectronics, no. 102, pp. 540-552, 2018.
  • [9] S. Nishitani, & T. Sakata, ‘’Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition,’’ ACS omega, vol. 3, no. 5, pp. 5382-5389, 2018.
  • [10] M. Andaç, G. Baydemir, & A. Denizli, (2018). Molecularly imprinted polymers as a tool for biomolecule separation. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology (pp. 511-545). William Andrew Publishing.
  • [11] M. L. Yola, & N. Atar, ‘’A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug,’’ Current Analytical Chemistry, vol. 13, no. 1, pp. 13-17, 2017.
  • [12] S. H. Zeisel, K. A. Da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, & A.L. Beiser, “Choline, an essential nutrient for humans,” The FASEB Journal, vol.5, no.7, pp. 2093-2098, 1991.
  • [13] J. C. M. Hamlin, Pauly, S. Melnyk, O. Pavliv, W. Starrett, T. A. Crook & S. J. James, Autism Research and Treatment, 2013.
  • [14] J. L. Sherriff, T. A. C. O'Sullivan, Properzi, J. L. Oddo & L.A. Adams, “One Carbon Metabolism and Hepatocellular Carcinoma,” Advances in Nutrition, vol. 7, no.1, pp. 5-13, 2016.
  • [15] Y. Tan, D. Jia, Z. Lin, B. Guo, B. He, C. Lu, C. Xiao, Z. Liu, N. Zhao, Z. Bian, W. Zhang, X. Liu, A. Lu & G. Zhang, “Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities,” International Journal of Molecular Sciences, vol. 17, no. 7, pp. 1148, 2016.
  • [16] A. Mastrokolias, R. Pool, E. Mina, K. M. Hettne, E. van Duijn, R. C. van der Mast, G. van Ommen, P. A. Hoen, C. Prehn, J. Adamski & W. van Roon-Mom, “Integration of Targeted Metabolomics and Transcriptomics Identifies Deregulation of Phosphatidylcholine Metabolism in Huntington’s Disease Peripheral Blood Samples,” Metabolomics, vol. 12, no.8, pp. 137,2016.
  • [17] N. Nikzad, & Z. Karami, “Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling,”International Journal of Biological Macromolecules, vol. 115, pp. 1241-1248, 2018.
  • [18] E. Barsoukov, J. R. Macdonald, Fundamentals of Elecktrochemistry, 2nd Ed., New Jersey, USA: John Wiley& Sons, Hoboken, 2005.
  • [19] G. Ertürk, M. Hedström, M. A. Tümer & A. Denizli, “Real-Time Prostate-Specific Antigen Detection with Prostate-Specific Antigen Imprinted Capacitive Biosensors,” Analytica Chimica Acta, vol. 891, pp. 120-129, 2015.
  • [20] B. Özcan, B. Demirbakan, G. Yeşiller & M. K. Sezgintürk, “Introducing a New Method for Evaluation of The Interaction Between an Antigen and an Antibody: Single Frequency Impedance Analysis for Biosensing Systems,” Talanta vol.125, 7-13, 2014.
  • [21] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas & J. J. M. Orfao, “Modification o the Surface Chemistry of Activated Carbons,” Carbon, vol. 37, no. 9, pp. 1379-1389, 1999.
  • [22] I. S. Park & N. Kim, “Thiolated Salmonella Antibody Immobilization onto the Gold Surface of Piezoelectric Quartz Crystal,” Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, 1998.
  • [23] I. Markovich & D. J. Mandler, “Effect of an Alkylsilane Monolayer on an Indium-Tin Oxide Surface on the Electrochemistry of Hexacyanoferrate,” Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, 2000.
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-6931-3281
Yazar: Melahat Sevgül Sevgül BAKAY (Sorumlu Yazar)
Kurum: DÜZCE ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0000-0000-0000
Yazar: Tuğçe POLAT
Ülke: Turkey


Orcid: 0000-0001-7548-5741
Yazar: Adil DENİZLİ
Kurum: Hacettepe University
Ülke: Turkey


Orcid: 0000-0002-5143-3602
Yazar: Feride Şermin UTKU
Kurum: YEDITEPE UNIVERSITY
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2020

Bibtex @araştırma makalesi { dubited578392, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {}, publisher = {Düzce Üniversitesi}, year = {2020}, volume = {8}, pages = {974 - 982}, doi = {10.29130/dubited.578392}, title = {Molecularly Imprinted Polymer Based Biosensor for Choline}, key = {cite}, author = {BAKAY, Melahat Sevgül and POLAT, Tuğçe and DENİZLİ, Adil and UTKU, Feride Şermin} }
APA BAKAY, M , POLAT, T , DENİZLİ, A , UTKU, F . (2020). Molecularly Imprinted Polymer Based Biosensor for Choline. Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 8 (1) , 974-982 . DOI: 10.29130/dubited.578392
MLA BAKAY, M , POLAT, T , DENİZLİ, A , UTKU, F . "Molecularly Imprinted Polymer Based Biosensor for Choline". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 974-982 <https://dergipark.org.tr/tr/pub/dubited/issue/49725/578392>
Chicago BAKAY, M , POLAT, T , DENİZLİ, A , UTKU, F . "Molecularly Imprinted Polymer Based Biosensor for Choline". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 974-982
RIS TY - JOUR T1 - Molecularly Imprinted Polymer Based Biosensor for Choline AU - Melahat Sevgül Sevgül BAKAY , Tuğçe POLAT , Adil DENİZLİ , Feride Şermin UTKU Y1 - 2020 PY - 2020 N1 - doi: 10.29130/dubited.578392 DO - 10.29130/dubited.578392 T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 974 EP - 982 VL - 8 IS - 1 SN - -2148-2446 M3 - doi: 10.29130/dubited.578392 UR - https://doi.org/10.29130/dubited.578392 Y2 - 2019 ER -
EndNote %0 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Molecularly Imprinted Polymer Based Biosensor for Choline %A Melahat Sevgül Sevgül BAKAY , Tuğçe POLAT , Adil DENİZLİ , Feride Şermin UTKU %T Molecularly Imprinted Polymer Based Biosensor for Choline %D 2020 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 8 %N 1 %R doi: 10.29130/dubited.578392 %U 10.29130/dubited.578392
ISNAD BAKAY, Melahat Sevgül , POLAT, Tuğçe , DENİZLİ, Adil , UTKU, Feride Şermin . "Molecularly Imprinted Polymer Based Biosensor for Choline". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 / 1 (Ocak 2020): 974-982 . https://doi.org/10.29130/dubited.578392
AMA BAKAY M , POLAT T , DENİZLİ A , UTKU F . Molecularly Imprinted Polymer Based Biosensor for Choline. DÜBİTED. 2020; 8(1): 974-982.
Vancouver BAKAY M , POLAT T , DENİZLİ A , UTKU F . Molecularly Imprinted Polymer Based Biosensor for Choline. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 982-974.