Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 160 - 175 2020-01-31

Daha temiz analizler: Yeşil kimya
Cleaner Analyzes: Green Chemistry

Ozlem SOGUT [1] , Busenur ÇELEBİ [2]


Yeşil Kimya, tehlikeli maddelerin kullanımını, üretimini azaltmak veya ortadan kaldırmak için kullanılan kimyasal ürün ve işlemlerin tasarımıdır. Yeşil kimya, atık oluşumunun engellenmesi, nihai ürünlerde reaksiyona giren tüm maddelerin kullanılması, katalizör kullanılması, üretimde yardımcı maddelerin kullanılmaması veya en az tehlikeli yardımcı maddelerin seçilmesi esasına dayalı tasarımlar yapmaktadır. Ayrıca, az miktarda enerji tüketen ve yenilenebilir hammaddeler kullanan tasarımlar yapar. Yeşil kimyada; kimyasal ürünler zehirliliği az olacak şekilde ve ürünlerin kullanım ömrü sona erdiğinde bozulmak üzere tasarlanmıştır. Reaksiyonlarda, ilave reaktifler gerektirebilecek ve atık oluşumuna neden olabilecek türevlerden kaçınılmaktadır. Tehlikeli maddelerin oluşumundan önce gerçek zamanlı, süreç içi izleme ve kontrol için analitik yöntemler kullanılır ve son olarak, kimyasal bir işlemde kullanılan maddeler yangın, patlama, sızıntı gibi kimyasal kaza riskini en aza indirecek şekilde seçilmeye çalışılır.


Green chemistry is the design of chemical products and processes used to reduce or eliminate the useage and production of hazardous substances. Green chemistry makes designs based on preventing the formation of waste, using all substances in the final product, using catalysts, not using reactants and choosing the least dangerous substances in production. It also makes designs that consumed small amounts of energy and used renewable raw materials. In green chemisty; less toxic chemical products is designed which is deteriorate at the end of products life. In the reactions, derivatives which may require additional reagents and may cause waste generation are avoided. Green chemistry uses analytical methods for real-time, in-process monitoring and control prior to the formation of hazardous substances, and finally, substances used in a chemical process are tried to be selected to minimize the risk of chemical accidents such as fire, explosion and leakage.

  • [1] P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, NY, USA, Oxford, 1998, pp. 30.
  • [2] P. Anastas and N. Eghbali, ''Green chemisty principles and practice'', Chem. Soc. Rev, vol. 39, pp. 301-312, 2010.
  • [3] A. Gałuszka, Z. Migaszewski and J. Namiesnik, ''The 12 principles of green chemistry and the significance mnemoic of green analytical practice''. Trends Anal. Chem., vol. 50, pp. 78-84, 2013.
  • [4] J. H. Clark, ''Green chemistry challenges and opportunities'', Green Chem., v. 1, pp. 1-8, 1999.
  • [5] EPA, ''Information of green chemistry challange''. https://www.epa.gov/greenchemistry/information-about-presidential-green-chemistry-challenge (accessed May 18, 2019).
  • [6] RSC. Green Chemistry Network. http://www.rsc.org/Membership/Networking/GCN/ (accessed Apr. 20, 2019).
  • [7] M. Kidwai, ''Green chemistry in India'', Pure Appl. Chem., vol. 73, no. 8, pp. 1261-63, 2001.
  • [8] P. T. Anastas, L. B. Bartlett, M. M. Kirchoff and T. C. Williamson, ''The role of catalysis in the design, development and implementation of green chemistry'', Catal. Today, vol. 5, no: 1-2, pp. 11-22, 2000.
  • [9] O. Yılmaz, B. Y. Kara, and U. Yetis, ''Hazardous waste management system design under population and environmental impact considerations'', J. Environ. Manage., vol. 203, pp. 720-731, 2017.
  • [10] S. L. Y. Tang, R. L. Smith and M. Poliakoff, ''Principles of green chemistry: productively'', Green Chem., vol. 11, pp. 761-62, 2005.
  • [11] T. J. Collins, ''Efficient, selective totally chlorine free (TCF) wood pulp bleaching technology''. The Presidential Green Chemistry Challenge Awards Program, Summary of 1998 Award Entries and Recipients, pp. 12, 1998. [Online]. Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1998.pdf
  • [12] R. A. Sheldon, ''The E factor: fifteen years'', Green Chem., vol. 9, pp. 1273-1283, 2007.
  • [13] R. Sheldon. ''Green chemistry''. https://www.sheldon.nl/roger/efactor (accessed: (May 5, 2019)
  • [14] B. M. Trost, ''The atom economy- a search for synthetic efficiency'', Sci., v. 254, no. 5037, pp. 1471-77, 1991.
  • [15] P. J. Dunn, ''The importance of green chemistry in process and research development''. Chem. Soc. Rev., vol. 41, pp. 1452-61, 2012.
  • [16] P. T. Anastas, M. M. Kirchhoff and T. C. Williamson, ''Catalysis as foundational of green chemistry'', Appl. Catal. A: Gener., vol. 221, no: 1-2, pp. 3-13, 2001.
  • [17] C. I. Herrerias, X. Yao, Z. Li and C. J. Li, ''Reactions of C-H bonds in water'', Chem. Rev., vol. 107, no. 6, pp. 2546-2542, 2007.
  • [18] Y. Fujiwara and C. Jia, ''New development in transitition metal- catalyzed synthetic reactions via CH bond activation'', Pure Appl. Chem., vol. 73, no. 2, pp. 319-324, 2001.
  • [19] S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda and N. Chatani, ''Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins'', Nature, vol. 366, pp. 529-531, 1993.
  • [20] D. R. Stuart, and K. Fagnou, ''The catalytic cross-coupling of unactivated arenes'', Sci., vol. 316, no. 5828, pp. 1172-1175, 2007.
  • [21] R. K. Morgan, ''Environmental impact assesment: the stage of art'', J. Impact Asses Project Appraisal., v. 30, no. 1, pp. 5-14, 2012, doi:10.1080/14615517.2012.661557.
  • [22] Rohm, Haas Com. '' Designing an environmentally safe marine antifoulant.'' The Presidential Green Chemistry Challenge Awards Program, Summary of 1996 Award Entries and Recipients, pp. 4, 1996 [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1996.pdf
  • [23] J. A. Jacobsen, ''Organotine compounds in Danish marine environment and fate studies'', PhD thesis, Inst. Biol. Chem, Roskilde, Denmark, 2000. [Online]. Available: https://core.ac.uk/download/pdf/12514229.pdf.
  • [24] M. Jain, S. Moonju and R.V. Singh, ''Synthesis, structural studies and some biological aspects, including nematicidal and insecticidal properties, of organotin (IV) complexes formed with biologically active sulfonamide imine ligand'', Appl. Orgonomet. Chem., vol. 18, no. 9, pp. 471- 479, 2004.
  • [25] T. Nicola, P. J. Whilton and S. Mann, ''Bioinorganic clays: synthesis and characterization of amino acids and poly aminoacid intercolated layered double hydroxides'', J. Mater. Chem., vol. 7, pp. 1623-1629, 1997.
  • [26] R. A. Sheldon, ''Green solvent for ustainable organic syhthesis:state of the art'', Green Chem., vol. 7, pp. 267-278, 2005.
  • [27] W. M. Nelson, Green Solvents for Chemistry: Perspectives and Practice, NY, USA, Oxford, 2003, p. 22.
  • [28] I. T. Horvath and P.T. Anastas, ''Innovations in green chemistry'', Chem. Rev., vol. 107, no. 6, pp. 2169- 2173, 2007.
  • [29] H. M. Marvaniya, K. N. Modi and D. J. Sen, ''Greener reactions under solvent free conditions''. Inter. J. Drug Develop. Res. vol. 3, no. 2, pp. 34–44, 2011.
  • [30] D. Huertas, M. Florscher and V. Dragojlovic, ''Solvent free Diels-Alder reactons of in sute generated cyclopentadiene'', Green Chem., vol. 1, pp. 91-95, 2009.
  • [31] D. C. Waddell and J. Mack , ''An environmentally benign solvent free Tishchenko reaction'', Green Chem., vol. 11, pp. 79-82, 2009.
  • [32] B. C. Ranu, A. Hajra and S.S. Dey, ''A practical and green approach towards systehesis of dihydropirimidinones without any solvent or catalyst'', Org. Process Res. Dev., vol. 6, no. 6, pp. 817-818, 2002.
  • [33] R. Breslow, ''Hydrophobic effects on simple organic reactions in water'', Accounts Chem. Res., vol. 24, no. 6, pp. 159-164, 1991.
  • [34] C.J. Li and L. Chen, ''Organic chemistry in water'', Chem. Soc. Rev., vol. 35, no. 1, pp. 68-82, 2006.
  • [35] Y. Hayashi, T. Urushima, S. Aratake, T. Okano and K. Obi, ''Organic solvent free enantio and diastreoselective, direct Mannich reaction in the presence of water'', Organic Lett., vol. 10, no. 1, pp. 21-24, 2008.
  • [36] N. Çolak ve Y. Tülek, ''Süperkritik akışkan ekstraksiyonu'', Gıda, c. 28, s. 3, ss. 313-320, 2003.
  • [37] Supercriticalfluid. org, ''Explore, use, make the most of supercritical fluids.'' http://www.supercriticalfluid.org/Supercritical-fluids.146.0.html (accessed Apr.18,2019). [38] Chem.libretexts. org. ''Supercritical fluids.'' https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Physical_Properties_of_Matter/States_of_Matter/Supercritical_Fluids (accessed Apr. 19, 2019).
  • [39] Greenchemuoft wordpress. ''Green chemistry principle 6: design for energy efficiency.'' https://greenchemuoft.wordpress.com/2016/02/18/greenchemprinciple6 (accessed Apr. 12, 2019).
  • [40] ACS Org. ''Green Chemistry.'' https://www.acs.org/content/acs/en/greenchemistry.html (accessed May 15, 2019).
  • [41] GE Plastics. ''New catalyst for producing ULTEM thermoplastic resin.'' The Presidential Green Chemistry Challenge Awards Program Summary of 1996 Award Entries and Recipients, 1996, pp.35-36. [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1996.pdf.
  • [42] C. R. Mathison and D. J. Cole-Hamilton, Catalyst Separation Recovery and Recycling, Nether, Springer press: 2006, pp. 145.
  • [43] Süd-Chemie Inc. ''A wastewater- free process for synthesis of solid oxide catalyst.'' The Presidential Green Chemistry Challenge Award Recipients 1996-2014, pp. 61, 2015 [Online] Available: https://www.epa.gov/sites/production/files/2015-02/documents/award_recipients_1996_2014.pdf
  • [44] K. M. Draths and J. W. Frost, ''Use of microbes as entvironmentally- belign synthetic catalysis.'' The Presidential Green Chemistry Challenge Awards Program, Summary of 1998 Award Entries and Recipients, pp. 3, 1998. [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1998.pdf
  • [45] N. W. Y. Ho, '' Successfully development of recombinant xyclose- fermenting saccroromyces yeasts capable of effectively co- fermenting glucose and xylose from renawable cellulatic biomass to ethanol as clean transportation biofuel.'' The Presidential Green Chemistry Challenge Awards Program, Summary of 1998 Award Entries and Recipients, 1998, pp. 21-22 [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1998.pdf
  • [46] H. H. Khoo, L.L. Wong, J. Tan, V. Isoni and P. Sharratt, ''Synthesis of 2- methylhydrofuran from various lignocellulosic feed stoks: sustainability assesment via LCA'', Resour. Conserv. Recy., vol. 95, pp. 174-180, 2015.
  • [47] I. S. Young and P. S. Baran, ''Protecting group free synthesis as an opportunity for invention'', Nature Chem., vol. 1, pp. 193-205, 2009.
  • [48] Altus Biologics Inc. '' Cross- linked enzyme crystalls (CLECs) as robust and broadly applicable industrial catalyst.'' The Presidential Green Chemistry Challenge Awards Program Summary of 1997 Award Entries and Recipient, pp. 13, 1997. [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1997.pdf
  • [49] M. Saçak, Kimyasal Kinetik, Ankara, Türkiye: Ankara Üniv. 1993, s.131.
  • [50] R. Ciriminna and M. Pagliaro, ''Green chemistry in the fine chemicals and pharmaceutical industries'', Org. Process Res. Dev.,vol. 17, no. 12, pp. 1479-1484, 2013.
  • [51] Pharmacia and Upjohn Inc. ''An alternative systhesis of bisnoraldehyde, on intermediate to progesterone and corticostreroids.'' The Presidential Green Chemistry Challenge Awards Program, Summary of 1996 Award Entries and Recipients, pp. 18, 1996 [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1996.pdf
  • [52] H. P. Lesutis, R. Gläser, C. L. Liotta and C. A. Eckert, ''Acid/base catalyzed ester hydrolysis in near critical water'', Chem. Commun., vol. 20, pp. 2063-2064, 1999.
  • [53] Polimernet.com.''Aerobik ve anaerobik bozunma.'' http://www.polimernet.com/Docs/Aerobik%20&%20Anaerobik%20Bio-Bozunma.pdf. (erişim: May. 12, 2019)
  • [54] R. S. Boethling, E. Sommer and D. Di DFiore , ''Designing small molecules for biogradability'', Chem. Rev., vol. 107, pp. 2207-2227, 2007.
  • [55] M. Gupta, S. Paul and R. Gupta, ''General aspects of 12 basic principles of green chemistry with applications'', Current Sci., vol. 99, no. 10, pp. 1341-1361, 2010.
  • [56] R. A. Gross and D. L. Kaplan, ''Biotechnological routes to toilored polymerşc products of environmental and industrial importance.'' The Presidential Green Chemistry Challenge Awards Program, Summary of 1997 Award Entries and Recipients, pp. 8, 1997. [Online] Available: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients1997.pdf
  • [57] P.T. Anastas, ''Green chemistry and the role of analytical methodology development''. Crit. Rev. Anal. Chem., vol. 29, no. 3, pp. 167-175, 1999.
  • [58] L. H. Keith, L.U. Gron and J.L. Young, ''Green analytical metodology'', Chem. Rev., vol. 107, pp. 2697, 2007.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-4661-5401
Yazar: Ozlem SOGUT (Sorumlu Yazar)
Kurum: Ege Üniversitesi
Ülke: Turkey


Orcid: 0000-0002-2207-1868
Yazar: Busenur ÇELEBİ

Tarihler

Yayımlanma Tarihi : 31 Ocak 2020

Bibtex @derleme { dubited579987, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {}, publisher = {Düzce Üniversitesi}, year = {2020}, volume = {8}, pages = {160 - 175}, doi = {}, title = {Daha temiz analizler: Yeşil kimya}, key = {cite}, author = {SOGUT, Ozlem and ÇELEBİ, Busenur} }
APA SOGUT, O , ÇELEBİ, B . (2020). Daha temiz analizler: Yeşil kimya. Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 8 (1) , 160-175 . Retrieved from https://dergipark.org.tr/tr/pub/dubited/issue/49725/579987
MLA SOGUT, O , ÇELEBİ, B . "Daha temiz analizler: Yeşil kimya". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 160-175 <https://dergipark.org.tr/tr/pub/dubited/issue/49725/579987>
Chicago SOGUT, O , ÇELEBİ, B . "Daha temiz analizler: Yeşil kimya". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 160-175
RIS TY - JOUR T1 - Daha temiz analizler: Yeşil kimya AU - Ozlem SOGUT , Busenur ÇELEBİ Y1 - 2020 PY - 2020 N1 - DO - T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 160 EP - 175 VL - 8 IS - 1 SN - -2148-2446 M3 - UR - Y2 - 2019 ER -
EndNote %0 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Daha temiz analizler: Yeşil kimya %A Ozlem SOGUT , Busenur ÇELEBİ %T Daha temiz analizler: Yeşil kimya %D 2020 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 8 %N 1 %R %U
ISNAD SOGUT, Ozlem , ÇELEBİ, Busenur . "Daha temiz analizler: Yeşil kimya". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 / 1 (Ocak 2020): 160-175 .
AMA SOGUT O , ÇELEBİ B . Daha temiz analizler: Yeşil kimya. DÜBİTED. 2020; 8(1): 160-175.
Vancouver SOGUT O , ÇELEBİ B . Daha temiz analizler: Yeşil kimya. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 175-160.