Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 925 - 939 2020-01-31

Mn Katkılı CdO Fotodiyotların İletkenlik ve Arayüz Durum Yoğunluğu Karakteristikleri
Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes

Mümin Mehmet KOÇ [1]


İnce film üretiminde kullanılan CdO ve Mn katkılı CdO çözeltiler Sol-gel yöntemi kullanılarak üretildi. Katkısız, %0.2 Mn katkılı, %6 Mn katkılı ve %10 Mn katkılı CdO çözeltileri spin kaplama yöntemi kullanılarak silisyum tabakalar üzerine fotofiyot üretim amacı ile kaplandı. İletkenlik – voltaj (G - V) ölçümleri gerçekleştirildi. Mn katkılamanın CdO fotodiyotların iletkenlik özelliklerini iyileştirdiği görüldü. Artan AC sinyal frekansı ile iletkenlik karakteristiğinin de artış gösterdiği tespit edildi. Düzeltilmiş iletkenlik – voltaj (Gadj – V) grafikleri,  iletkenlik – voltaj grafikleri kullanılarak elde edildi. Artan AC sinyal frekansı ile düzeltilmiş iletkenlik değerinin de artış gösterdiği anlaşıldı. Düzeltilmiş iletkenlik – voltaj ve iletkenlik – voltaj grafikleri kullanılarak arayüz durum yoğunluğu değerleri elde edildi. Üretilen farklı fotodiyotlar için farklı arayüz durum yoğunluğu değerleri var olduğu anlaşıldı. Arayüz durum yoğunluğu değerlerinin Mn katkılaması ile arttığı keşfedildi. 

Sol-gel technique was used to fabricate CdO and Mn doped CdO solutions which were used to produce thin films. Undoped and 0.2% Mn doped, 6% Mn doped, and 10% Mn doped solutions were spin coated on Si wafers to fabricate photodiodes. Conductance – voltage (G - V) measurements were performed. Mn doping enhances the conductance properties of the CdO diodes. Increased conductance characteristics were obtained with increasing AC signal frequency. Corrective conductance – voltage (Gadj – V) graphs were obtained using conductance voltage graphs. Increased corrective conductance (Gadj) values were obtained with increasing AC signal frequency. Using corrective conductance – voltage (Gadj – V) and conductance – voltage (G - V) data density of interface states (Dit) values of the diodes were calculated. Different density of state values were obtained for the different photodiode. Density of state values were found to increase with increased Mn doping.

  • [1] B. Yu and M. Meyyappan, “Nanotechnology: Role in emerging nanoelectronics,” Solid. State. Electron., vol. 50, no. 4, pp. 536–544, 2006.
  • [2] O. Koo, I. Rubinstein, and H. Onyuksel, “Role of nanotechnology in targeted drug delivery and imaging: a concise review,” Nanomedicine Nanotechnology, Biol. Med., vol. 1, no. 3, pp. 193–212, 2005.
  • [3] V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Trop. J. Pharm. Res., vol. 5, no. June, pp. 561–573, 2006.
  • [4] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications.,” Science, vol. 297, no. 5582, pp. 787–92, Aug. 2002.
  • [5] N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 63–75, Apr. 2003.
  • [6] S. Jolley, M. Koppang, T. Jackson, and G. M. Swain, “Flow Injection Analysis with Diamond Thin-Film Detectors,” Anal. Chem., vol. 69, no. 20, pp. 4099–4107, Oct. 1997.
  • [7] K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Phys., vol. 24, no. 1, pp. 57–64, Jan. 1984.
  • [8] P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film electroluminescent displays,” Materials Science and Engineering R: Reports, vol. 21, no. 4. Elsevier BV, pp. 171–219, 1998.
  • [9] M. W. J. Prins et al., “A ferroelectric transparent thin-film transistor,” Appl. Phys. Lett., vol. 68, no. 25, pp. 3650–3652, 1996.
  • [10] Ö. Tamer et al., “Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study,” J. Mol. Struct., vol. 1106, pp. 98–107, 2016.
  • [11] E. Şennik, Ş. Ürdem, M. Erkovan, and N. Kilinç, “Sputtered platinum thin films for resistive hydrogen sensor application,” Mater. Lett., vol. 177, pp. 104–107, Aug. 2016.
  • [12] Y. Şahin, S. Öztürk, N. Kilinç, A. Kösemen, M. Erkovan, and Z. Z. Öztürk, “Electrical conduction and NO 2 gas sensing properties of ZnO nanorods,” Appl. Surf. Sci., vol. 303, pp. 90–96, 2014.
  • [13] R. Topkaya, M. Erkovan, A. Öztürk, O. Öztürk, B. Akta, and M. Özdemir, “Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers,” J. Appl. Phys., vol. 108, no. 2, 2010.
  • [14] M. Yaqoob Khan, C. Bin Wu, M. Erkovan, and W. Kuch, “Probing antiferromagnetism in NiMn/Ni/(Co)/Cu3Au(001) single-crystalline epitaxial thin films,” J. Appl. Phys., vol. 113, no. 2, 2013.
  • [15] A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application,” Angew. Chemie Int. Ed., vol. 46, no. 8, pp. 1222–1244, 2007.
  • [16] Z. Zhang, Z. Shi, Y. Du, Z. Yu, L. Guo, and D. Guo, “A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry,” Appl. Surf. Sci., vol. 427, pp. 409–415, Jan. 2018.
  • [17] A. Dere et al., “Boron doped graphene based linear dynamic range photodiode,” Phys. B Condens. Matter, vol. 545, pp. 86–93, Sep. 2018.
  • [18] S. Mansouri, B. Coskun, L. El Mir, A. G. Al-Sehemi, A. Al-Ghamdi, and F. Yakuphanoglu, “Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications,” J. Electron. Mater., vol. 47, no. 4, pp. 2461–2467, Apr. 2018.
  • [19] K. Yildiz, U. Akgul, B. Coskun, and Y. Atici, “Rf-sputtering deposition of nano-crystalline zirconia thin films with high transparency,” Mater. Lett., vol. 94, pp. 161–164, 2013.
  • [20] B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bull., vol. 25, no. 8, pp. 22–27, Aug. 2000.
  • [21] B. Coskun, T. Asar, U. Akgul, K. Yildiz, and Y. Atici, “Investigation of structural and electrical properties of Zirconium dioxide thin films deposited by reactive RF sputtering technique,” Ferroelectrics, vol. 502, no. 1, pp. 147–158, Sep. 2016.
  • [22] M. Soylu, B. Coskun, A. G. Al-Sehemi, A. A. Al-Ghamdi, and F. Yakuphanoglu, “The validity of Kohlrausch law for the photocurrent transient and the role of N2/Ar flow ratio in photoconductivity of sputtered CoZnO,” J. Alloys Compd., vol. 712, pp. 152–163, 2017.
  • [23] M. Erkovan et al., “Probing Exchange Bias Properties of Pt x Co1−x /Pt/CoO Films,” J. Supercond. Nov. Magn., vol. 29, no. 1, pp. 163–168, Jan. 2016.
  • [24] M. Erkovan, M. E. Aköz, U. Parlak, and O. Öztürk, “The Study of Exchange Bias Effect in PtxCo1−x/CoO Bilayers,” J. Supercond. Nov. Magn., vol. 30, no. 10, pp. 2909–2913, Oct. 2017.
  • [25] M. E. Aköz et al., “Manipulation of exchange coupling in Py/Co/Cr multilayer thin films,” in Acta Physica Polonica A, 2015, vol. 127, no. 4, pp. 992–994.
  • [26] B. Coşkun et al., “Optoelectrical properties of Al/p-Si/Fe:N doped ZnO/Al diodes,” Thin Solid Films, vol. 653, pp. 236–248, May 2018.
  • [27] N. Aslan et al., “Ti doped amorphous carbon (Al/Ti-a:C/p-Si/Al) photodiodes for optoelectronic applications,” J. Mol. Struct., vol. 1155, 2018.
  • [28] N. K. Dhar, P. R. Boyd, M. Martinka, J. H. Dinan, L. A. Almeida, and N. Goldsman, “CdZnTe heteroepitaxy on 3” (112) Si: Interface, surface, and layer characteristics,” J. Electron. Mater., vol. 29, no. 6, pp. 748–753, 2000.
  • [29] O. Kaygili, S. V. Dorozhkin, T. Ates, A. A. Al-Ghamdi, and F. Yakuphanoglu, “Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method,” Ceram. Int., vol. 40, no. 7, pp. 9395–9402, 2014.
  • [30] M. Caglar and F. Yakuphanoglu, “Structural and optical properties of copper doped ZnO films derived by sol-gel,” Appl. Surf. Sci., vol. 258, no. 7, pp. 3039–3044, J, 2012.
  • [31] H. Aydin, C. Aydin, A. A. Al-Ghamdi, W. A. Farooq, and F. Yakuphanoglu, “Refractive index dispersion properties of Cr-doped ZnO thin films by sol-gel spin coating method,” Optik (Stuttg)., vol. 127, no. 4, pp. 1879–1883, 2016.
  • [32] F. Yakuphanoglu, “Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 569–573, 2011.
  • [33] O. Kaygili, S. Keser, T. Ates, A. A. Al-Ghamdi, and F. Yakuphanoglu, “Controlling of dielectrical and optical properties of hydroxyapatite based bioceramics by Cd content,” Powder Technol., vol. 245, pp. 1–6, 2013.
  • [34] D. Sathya Raj, T. Krishnakumar, R. Jayaprakash, T. Prakash, G. Leonardi, and G. Neri, “CO sensing characteristics of hexagonal-shaped CdO nanostructures prepared by microwave irradiation,” Sensors Actuators B Chem., vol. 171–172, pp. 853–859, 2012.
  • [35] K. Han, S. Yoon, and W. J. Chung, “CdS and CdSe Quantum Dot-Embedded Silicate Glasses for LED Color Converter,” Int. J. Appl. Glas. Sci., vol. 6, no. 2, pp. 103–108, 2015.
  • [36] R. R. Salunkhe and C. D. Lokhande, “Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films,” Sensors Actuators B Chem., vol. 129, no. 1, pp. 345–351, 2008.
  • [37] R. N. Bulakhe and C. D. Lokhande, “Chemically deposited cubic structured CdO thin films: Use in liquefied petroleum gas sensor,” Sensors Actuators B Chem., vol. 200, pp. 245–250, 2014.
  • [38] J. K. Rajput, T. K. Pathak, V. Kumar, and L. P. Purohit, “Influence of sol concentration on CdO nanostructure with gas sensing application,” Appl. Surf. Sci., vol. 409, pp. 8–16, 2017.
  • [39] R. J. Deokate et al., “Spray deposition of highly transparent fluorine doped cadmium oxide thin films,” Appl. Surf. Sci., vol. 254, no. 7, pp. 2187–2195,. 2008.
  • [40] F. Yakuphanoglu, “Nanocluster n-CdO thin film by sol–gel for solar cell applications,” Appl. Surf. Sci., vol. 257, no. 5, pp. 1413–1419, 2010.
  • [41] J. D. Benson et al., “Growth and analysis of HgCdTe on alternate substrates,” in Journal of Electronic Materials, 2012, vol. 41, no. 10, pp. 2971–2974.
  • [42] L. He et al., “MBE HgCdTe on Si and GaAs substrates,” J. Cryst. Growth, vol. 301–302, no. SPEC. ISS., pp. 268–272, 2007.
  • [43] S. Özden and M. M. Koc, “Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates,” Appl. Nanosci., vol. 8, no. 4, p. pp 891–903, 2018.
  • [44] M. Kurban and Ş. Erkoç, “Structural and Electronic Properties of Zn m Cd n Te k (m+ n+ k= 2–4) Clusters: DFT Calculations,” J. Comput. Theor. Nanosci., vol. 12, no. 9, pp. 2605–2615, 2015.
  • [45] M. KURBAN, “Size- and composition-dependent structure of ternary Cd-Te-Se nanoparticles,” Turkish J. Phys., vol. 42, no. 4, pp. 443–454, 2018.
  • [46] M. Kurban and Ş. Erkoç, “Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study,” Comput. Mater. Sci., vol. 122, pp. 295–300, 2016.
  • [47] B. J. Lokhande, R. C. Ambare, R. S. Mane, and S. R. Bharadwaj, “Boron-doped cadmium oxide composite structures and their electrochemical measurements,” Mater. Res. Bull., vol. 48, no. 8, pp. 2978–2983, 2013.
  • [48] A. Gencer Imer, “Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film,” Superlattices Microstruct., vol. 92, pp. 278–284, 2016.
  • [49] F. Yakuphanoglu, “Synthesis and electro-optic properties of nanosized-boron doped cadmium oxide thin films for solar cell applications,” Sol. Energy, vol. 85, no. 11, pp. 2704–2709, 2011.
  • [50] R. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra, and P. K. Kahol, “Highly conducting and transparent tin-doped CdO thin films for optoelectronic applications,” Mater. Lett., vol. 62, no. 25, pp. 4103–4105, 2008.
  • [51] S. Akın, G. Karanfil, A. Gültekin, and S. Sönmezoğlu, “Improvement of physical properties of CdO thin films by Au–Ag nanocluster codoping,” J. Alloys Compd., vol. 579, pp. 272–278, 2013.
  • [52] F. Dagdelen, Z. Serbetci, R. K. Gupta, and F. Yakuphanoglu, “Preparation of nanostructured Bi-doped CdO thin films by sol–gel spin coating method,” Mater. Lett., vol. 80, pp. 127–130, 2012.
  • [53] B. Hymavathi, B. R. Kumar, and T. S. Rao, “Investigations on Physical Properties of Nanostructured Cr Doped CdO Thin Films for Optoelectronic Applications,” Procedia Mater. Sci., vol. 10, pp. 285–291, 2015.
  • [54] Y. Gülen, B. Sahin, F. Bayansal, and H. A. Çetinkara, “Solution-phase synthesis of un-doped and Pb doped CdO films,” Superlattices Microstruct., vol. 68, pp. 48–55, 2014.
  • [55] S. Dugan, M. M. Koç, and B. Coşkun, “Structural, electrical and optical characterization of Mn doped CdO photodiodes,” J. Mol. Struct., p. 127235, 2019.
  • [56] T. K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, “Studies on dc magnetron sputtered cadmium oxide films,” Appl. Surf. Sci., vol. 169–170, pp. 529–534, 2001.
  • [57] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique,” Bell Syst. Tech. J., vol. 46, no. 6, pp. 1055–1133, 1967.
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-4500-0373
Yazar: Mümin Mehmet KOÇ
Kurum: KIRKLARELI UNIVERSITY
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2020

Bibtex @araştırma makalesi { dubited641738, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {}, publisher = {Düzce Üniversitesi}, year = {2020}, volume = {8}, pages = {925 - 939}, doi = {10.29130/dubited.641738}, title = {Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes}, key = {cite}, author = {Koç, Mümin Mehmet} }
APA Koç, M . (2020). Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes . Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 8 (1) , 925-939 . DOI: 10.29130/dubited.641738
MLA Koç, M . "Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes" . Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 925-939 <https://dergipark.org.tr/tr/pub/dubited/issue/49725/641738>
Chicago Koç, M . "Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2020 ): 925-939
RIS TY - JOUR T1 - Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes AU - Mümin Mehmet Koç Y1 - 2020 PY - 2020 N1 - doi: 10.29130/dubited.641738 DO - 10.29130/dubited.641738 T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 925 EP - 939 VL - 8 IS - 1 SN - -2148-2446 M3 - doi: 10.29130/dubited.641738 UR - https://doi.org/10.29130/dubited.641738 Y2 - 2020 ER -
EndNote %0 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes %A Mümin Mehmet Koç %T Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes %D 2020 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 8 %N 1 %R doi: 10.29130/dubited.641738 %U 10.29130/dubited.641738
ISNAD Koç, Mümin Mehmet . "Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 / 1 (Ocak 2020): 925-939 . https://doi.org/10.29130/dubited.641738
AMA Koç M . Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes. DÜBİTED. 2020; 8(1): 925-939.
Vancouver Koç M . Conductance and Density of Interface State Characteristics of Mn Doped CdO Photodiodes. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 925-939.