Araştırma Makalesi
BibTex RIS Kaynak Göster

Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği

Yıl 2020, Cilt: 8 Sayı: 2, 1732 - 1745, 30.04.2020
https://doi.org/10.29130/dubited.622000

Öz

Bu çalışmada, kesilmiş oktahedron yapısına sahip PdnPt(6-n)Au32 nanoalaşımlarının kanonik topluluk koşullarındaki (NVT) klasik Moleküler Dinamik simülasyonları, erime dinamiğini incelemek için iki farklı ısıtma oranı ile gerçekleştirilmiştir. MD simülasyonlarında kullanılacak başlangıç konfigürasyonlarını elde edebilmek için topağın kimyasal düzeni, kesilmiş oktahedron yapısında değişimlere izin vermeyecek şekilde Basin-Hopping algoritması ile optimize edilmiştir. Atomlar arası etkileşimleri modellemek için Gupta çok-cisim potansiyeli kullanılmıştır. Elde edilen kalorik eğriler ve erime geçişini incelemek için kullanılan Lindemann indeksi değişim grafikleri göstermektedir ki erime geçişi belirli bir sıcaklık aralığında ve bir izomerizasyon şeklinde gerçekleşmektedir. Keskin olmayan kalorik eğri geçişleri camsı benzeri geçiş olarak sınıflandırılmıştır. İzomerizasyonun gerçekleştiği sıcaklık aralığı ise ısıtma oranı değerine bağlı olarak değişmektedir.

Destekleyen Kurum

Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2016-22794455-02

Teşekkür

Bu çalışma Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir.

Kaynakça

  • [1] R. L. Johnston, Atomic and Molecular Clusters, c. 20024557. London ; New York : Taylor & Francis, 2002.
  • [2] F. Baletto ve R. Ferrando, “Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects,” Rev. Mod. Phys., c. 77, s. 1, ss. 371–423, 2005.
  • [3] R. Ferrando, J. Jellinek, ve R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chem. Rev., c. 108, s. 3, ss. 845–910, 2008.
  • [4] Y. Shibuta ve T. Suzuki, “A Molecular Dynamics Study of the Phase Transition in Bcc Metal Nanoparticles,” J. Chem. Phys., c. 129, s. 14, ss. 144102, Oct. 2008.
  • [5] A. Chalgin et al., “Ternary Pt–Pd–Ag Alloy Nanoflowers for Oxygen Reduction Reaction Electrocatalysis,” CrystEngComm, c. 19, s. 46, ss. 6964–6971, 2017.
  • [6] Y. Yamauchi et al., “Electrochemical Synthesis of Mesoporous Pt-Au Binary Alloys with Tunable Compositions for Enhancement of Electrochemical Performance,” J. Am. Chem. Soc., c. 134, s. 11, ss. 5100–5109, 2012.
  • [7] S. Guo, S. Dong, ve E. Wang, “Three-dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as An Advanced Nanoelectrocatalyst for Methanol Oxidation,” ACS Nano, c. 4, s. 1, ss. 547–555, 2010.
  • [8] Y. Lu, Y. Jiang, ve W. Chen, “PtPd Porous Nanorods with Enhanced Electrocatalytic Activity and Durability for Oxygen Reduction Reaction,” Nano Energy, c. 2, s. 5, ss. 836–844, 2013.
  • [9] S. Taran, A. K. Garip, ve H. Arslan, “Theoretical Study of the Structures and Chemical Ordering of CoPd Nanoalloys Supported on MgO(001),” Int. J. Mod. Phys. C, c. 27, s. 12, ss. 1650146, Dec. 2016.
  • [10] F. Pittaway et al., “Theoretical Studies of Palladium-Gold Nanoclusters: Pd-Au Clusters with Up to 50 Atoms,” J. Phys. Chem. C, c. 113, s. 21, ss. 9141–9152, 2009.
  • [11] H. Arslan, “Structures and Energetic of Palladium-Cobalt Binary Clusters,” Int. J. Mod. Phys. C, c. 19, s. 8, ss. 1243–1255, 2008.
  • [12] S. Taran ve H. Arslan, “ConPdm ve ConAum (n+ m= 100) Nanoalaşımlarının MgO (001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi,” Düzce Üniversitesi Bilim ve Teknol. Derg., c. 6, s. 4, ss. 791–807, 2018.
  • [13] H. Arslan, A. K. Garip, ve R. L. Johnston, “Theoretical Study of the Structures and Chemical Ordering of Cobalt–Palladium Nanoclusters,” Phys. Chem. Chem. Phys., c. 17, s. 42, ss. 28311–28321, 2015.
  • [14] H. Arslan, “Global Minima for Pd N (N = 5–80) Clusters Described by Sutton–Chen Potential,” Int. J. Mod. Phys. C, c. 18, s. 8, ss. 1351–1359, 2007.
  • [15] H. Zhang, T. Watanabe, M. Okumura, M. Haruta, ve N. Toshima, “Catalytically Highly Active Top Gold Atom on Palladium Nanocluster,” Nat. Mater., c. 11, s. 1, ss. 49–52, 2012.
  • [16] D. Cheng, W. Wang, ve S. Huang, “The Onion-Ring Structure for Pd-Pt Bimetallic Clusters,” J. Phys. Chem. B, c. 110, s. 33, ss. 16193–16196, 2006.
  • [17] I. Parsina ve F. Baletto, “Tailoring the Structural Motif of AgCo Nanoalloys: Core/Shell Versus Janus-Like,” J. Phys. Chem. C, c. 114, s. 3, ss. 1504–1511, 2010.
  • [18] N. Toshima, R. Ito, T. Matsushita, ve Y. Shiraishi, “Trimetallic Nanoparticles Having A Au-Core Structure,” Catal. Today, c. 122, s. 3–4, ss. 239–244, 2007.
  • [19] H. Zhang, M. Okumura, ve N. Toshima, “Stable Dispersions of PVP-Protected Au/Pt/Ag Trimetallic Nanoparticles as Highly Active Colloidal Catalysts for Aerobic Glucose Oxidation,” J. Phys. Chem. C, c. 115, s. 30, ss. 14883–14891, 2011.
  • [20] X. Zhang, F. Zhang, ve K. Y. Chan, “Preparation of Pt-Ru-Co Trimetallic Nanoparticles and Their Electrocatalytic Properties,” Catal. Commun., c. 5, s. 12, ss. 749–753, 2004.
  • [21] N. R. de Tacconi, W.-Y. Lin, W. Chanmanee, L. Nikiel, K. Rajeshwar, ve W. A. Wampler, “ Photocatalytically Generated Trimetallic (Pt-Pd-Au/C-TiO 2 ) Nanocomposite Electrocatalyst ,” J. Electrochem. Soc., c. 159, s. 7, ss. F226–F233, 2012.
  • [22] Z. Zhao, M. Li, D. Cheng, ve J. Zhu, “Understanding the Structural Properties and Thermal Stabilities of Au–Pd–Pt Trimetallic Clusters,” Chem. Phys., c. 441, ss. 152–158, Sep. 2014.
  • [23] G. H. Wu, Q. M. Liu, ve X. Wu, “Geometrical and Energetic Properties in 38-Atom Trimetallic AuPdPt Clusters,” Chem. Phys. Lett., c. 620, ss. 92–97, 2015.
  • [24] G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, ve R. Ferrando, “Magic Polyicosahedral Core-Shell Clusters,” Phys. Rev. Lett., c. 93, s. 10, 2004.
  • [25] M. Li ve D. Cheng, “Molecular Dynamics Simulation of the Melting Behavior of Crown-Jewel Structured Au-Pd Nanoalloys,” J. Phys. Chem. C, c. 117, s. 36, ss. 18746–18751, 2013.
  • [26] A. Rapallo, J. A. Olmos-Asar, O. A. Oviedo, M. Ludueña, R. Ferrando, and M. M. Mariscal, “Thermal Properties of Co/Au nanoalloys and Comparison of Different Computer Simulation Techniques,” J. Phys. Chem. C, c. 116, s. 32, ss. 17210–17218, 2012.
  • [27] R. Subbaraman ve S. K. R. S. Sankaranarayanan, “Effect of Ag Addition on the Thermal Characteristics and Structural Evolution of Ag-Cu-Ni Ternary Alloy Nanoclusters: Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., c. 84, s. 7, ss. 1–16, 2011.
  • [28] H. Akbarzadeh, M. Abbaspour, ve E. Mehrjouei, “Effect of Systematic Addition of the Third Component on the Melting Characteristics and Structural Evolution of Binary Alloy Nanoclusters,” J. Mol. Liq., c. 249, ss. 412–419, 2018.
  • [29] H. Akbarzadeh, E. Mehrjouei, S. Ramezanzadeh, ve C. Izanloo, “Ni-Co Bimetallic Nanoparticles with Core-Shell, Alloyed, and Janus Structures Explored by MD Simulation,” J. Mol. Liq., c. 248, ss. 1078–1095, 2017.
  • [30] H. Arslan ve A. E. Irmak, “Heat Capacity of 13- and 19-Atom Pd–Co Binary Clusters: Parallel Tempering Monte Carlo Study,” Int. J. Mod. Phys. C, c. 20, s. 11, ss. 1737–1747, 2009.
  • [31] H. Yıldırım ve H. Arslan, “CuAgAu Üçlü Nanoalaşımların Optimizasyonu ve Erime Dinamiği,” Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg., c. 21, s. 1, ss. 336–351, 2019.
  • [32] N. Zhang, F. Y. Chen, ve X. Q. Wu, “Global Optimization and Oxygen Dissociation on Polyicosahedral Ag32Cu6 Core-Shell Cluster for Alkaline Fuel Cells,” Sci. Rep., c. 5, s. June, ss. 1–12, 2015.
  • [33] P. Matczak ve S. Romanowski, “The Effect of Alloying on the H-atom Adsorption on the (100) Surfaces of Pd-Ag, Pd-Pt, Pd-Au, Pt-Ag, and Pt-Au. A Theoretical Study,” Cent. Eur. J. Chem., c. 9, s. 3, ss. 474–480, 2011.
  • [34] F. Cleri ve V. Rosato, “Tight-Binding Potentials for Transition Metals and Alloys,” Phys. Rev. B, c. 48, s. 1, ss. 22–33, 1993.
  • [35] A. Logsdail, L. O. Paz-Borbón, ve R. L. Johnston, “Structures and Stabilities of Platinum-Gold Nanoclusters,” J. Comput. Theor. Nanosci., c. 6, s. 4, ss. 857–866, 2009.
  • [36] C. Massen, T. V. Mortimer-Jones, ve R. L. Johnston, “Geometries and Segregation Properties of Platinum-Palladium Nanoalloy Clusters,” J. Chem. Soc. Dalt. Trans., s. 23, ss. 4375–4388, 2002.
  • [37] R. L. Johnston, L. O. Paz-Borbón, G. Barcaro, ve A. Fortunelli, “Structural Motifs, Mixing, and Segregation Effects in 38-atom Binary Clusters,” J. Chem. Phys., c. 128, s. 13, 2008.
  • [38] G. Rossi et al., “Global Optimization of Bimetallic Cluster Structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems.,” J. Chem. Phys., c. 122, s. 19, ss. 194309, 2005.
  • [39] D. J. Wales ve H. A. Scheraga, “Global Optimization of Clusters, Crystals, and Biomolecules,” Science, c. 285, s. 5432. ss. 1368–1372, 1999.
  • [40] I. T. Todorov, W. Smith, K. Trachenko, ve M. T. Dove, “DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism,” J. Mater. Chem., c. 16, s. 20, ss. 1911, 2006.
  • [41] I. J. Bush, I. T. Todorov, ve W. Smith, “A DAFT DL_POLY11URL: http://www.ccp5.ac.uk/DL_POLY. Distributed Memory Adaptation of the Smoothed Particle Mesh Ewald method,” Comput. Phys. Commun., c. 175, s. 5, ss. 323–329, 2006.
  • [42] H. A. Boateng ve I. T. Todorov, “Arbitrary Order Permanent Cartesian Multipolar Electrostatic Interactions,” J. Chem. Phys., c. 142, s. 3, 2015.
  • [43] Y. Shibuta ve T. Suzuki, “Phase Transition in Substrate-Supported Molybdenumnanoparticles: A Molecular Dynamics Study,” Phys. Chem. Chem. Phys., c. 12, s. 3, ss. 731–739, 2010.
  • [44] Y.-H. Wen, R. Huang, X.-M. Zeng, G.-F. Shao, ve S.-G. Sun, “Tetrahexahedral Pt–Pd Alloy Nanocatalysts with High-Index Facets: An Atomistic Perspective on Thermodynamic and Shape Stabilities,” J. Mater. Chem. A, c. 2, s. 5, ss. 1375–1382, 2014.
  • [45] X. Liu, H. Guo, ve C. Meng, “Melting of Bulk Gold During Continuous Heating: A Molecular Dynamics Study,” ICIC 2010 - 3rd Int. Conf. Inf. Comput., c. 4, s. 1, ss. 121–124, 2010.
  • [46] H. Akbarzadeh ve M. Abbaspour, “Different Morphologies of Aluminum Nanoclusters: Effect of Pressure on Solid-Liquid Phase Transition of the Nanoclusters Using Molecular Dynamics Simulations,” J. Mol. Liq., c. 230, ss. 20–23, Mar. 2017.
  • [47] A. L. Gould, A. J. Logsdail, ve C. R. A. Catlow, “Influence of Composition and Chemical Arrangement on the Kinetic Stability of 147-Atom Au-Ag Bimetallic Nanoclusters,” J. Phys. Chem. C, c. 119, s. 41, ss. 23685–23697, 2015.
  • [48] F. Chen, B. C. Curley, G. Rossi, ve R. L. Johnston, “Structure, Melting, and Thermal Stability of 55 Atom Ag-Au Nanoalloys,” J. Phys. Chem. C, c. 111, s. 26, ss. 9157–9165, 2007.
  • [49] F. Chen ve R. L. Johnston, “Martensitic Transformations in Ag-Au Bimetallic Core-Shell Nanoalloys,” Appl. Phys. Lett., c. 92, s. 2, 2008.
  • [50] Z. Kuntová, G. Rossi, ve R. Ferrando, “Melting of Core-Shell Ag-Ni and Ag-Co Nanoclusters Studied via Molecular Dynamics Simulations,” Phys. Rev. B - Condens. Matter Mater. Phys., c. 77, s. 20, ss. 1–8, 2008.
  • [51] C. Mottet, J. Goniakowski, F. Baletto, R. Ferrando, ve G. Treglia, “Modeling Free and Supported Metallic Nanoclusters: Structure and Dynamics,” in Phase Transitions, 2004, c. 77, s. 1–2, ss. 101–113.

Melting Dynamics of PdnPt(6-n)Au32 Nanoalloys with Truncated Octahedron Structure

Yıl 2020, Cilt: 8 Sayı: 2, 1732 - 1745, 30.04.2020
https://doi.org/10.29130/dubited.622000

Öz

In this study, classical Molecular Dynamics simulations of canonical ensemble conditions (NVT) of PdnPt(6-n)Au32 nanoalloys with truncated octahedron structure were performed with two different heating rates to study the melting dynamics. In order to obtain the initial configurations to be used in MD simulations, the chemical ordering of the cluster was optimized with the Basin-Hopping algorithm, which would not allow changes in the truncated octahedron structure. Gupta many-body potential was used to model interatomic interactions. The caloric curves obtained and the Lindemann index variation graphs used to examine the melting transition show that the melting transition occurs within a certain temperature range and in the form of an isomerization. Unsharp caloric curve transitions are classified as glass-like transitions. The temperature range in which the isomerization takes place depends on the heating rate value.

Proje Numarası

2016-22794455-02

Kaynakça

  • [1] R. L. Johnston, Atomic and Molecular Clusters, c. 20024557. London ; New York : Taylor & Francis, 2002.
  • [2] F. Baletto ve R. Ferrando, “Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects,” Rev. Mod. Phys., c. 77, s. 1, ss. 371–423, 2005.
  • [3] R. Ferrando, J. Jellinek, ve R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chem. Rev., c. 108, s. 3, ss. 845–910, 2008.
  • [4] Y. Shibuta ve T. Suzuki, “A Molecular Dynamics Study of the Phase Transition in Bcc Metal Nanoparticles,” J. Chem. Phys., c. 129, s. 14, ss. 144102, Oct. 2008.
  • [5] A. Chalgin et al., “Ternary Pt–Pd–Ag Alloy Nanoflowers for Oxygen Reduction Reaction Electrocatalysis,” CrystEngComm, c. 19, s. 46, ss. 6964–6971, 2017.
  • [6] Y. Yamauchi et al., “Electrochemical Synthesis of Mesoporous Pt-Au Binary Alloys with Tunable Compositions for Enhancement of Electrochemical Performance,” J. Am. Chem. Soc., c. 134, s. 11, ss. 5100–5109, 2012.
  • [7] S. Guo, S. Dong, ve E. Wang, “Three-dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as An Advanced Nanoelectrocatalyst for Methanol Oxidation,” ACS Nano, c. 4, s. 1, ss. 547–555, 2010.
  • [8] Y. Lu, Y. Jiang, ve W. Chen, “PtPd Porous Nanorods with Enhanced Electrocatalytic Activity and Durability for Oxygen Reduction Reaction,” Nano Energy, c. 2, s. 5, ss. 836–844, 2013.
  • [9] S. Taran, A. K. Garip, ve H. Arslan, “Theoretical Study of the Structures and Chemical Ordering of CoPd Nanoalloys Supported on MgO(001),” Int. J. Mod. Phys. C, c. 27, s. 12, ss. 1650146, Dec. 2016.
  • [10] F. Pittaway et al., “Theoretical Studies of Palladium-Gold Nanoclusters: Pd-Au Clusters with Up to 50 Atoms,” J. Phys. Chem. C, c. 113, s. 21, ss. 9141–9152, 2009.
  • [11] H. Arslan, “Structures and Energetic of Palladium-Cobalt Binary Clusters,” Int. J. Mod. Phys. C, c. 19, s. 8, ss. 1243–1255, 2008.
  • [12] S. Taran ve H. Arslan, “ConPdm ve ConAum (n+ m= 100) Nanoalaşımlarının MgO (001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi,” Düzce Üniversitesi Bilim ve Teknol. Derg., c. 6, s. 4, ss. 791–807, 2018.
  • [13] H. Arslan, A. K. Garip, ve R. L. Johnston, “Theoretical Study of the Structures and Chemical Ordering of Cobalt–Palladium Nanoclusters,” Phys. Chem. Chem. Phys., c. 17, s. 42, ss. 28311–28321, 2015.
  • [14] H. Arslan, “Global Minima for Pd N (N = 5–80) Clusters Described by Sutton–Chen Potential,” Int. J. Mod. Phys. C, c. 18, s. 8, ss. 1351–1359, 2007.
  • [15] H. Zhang, T. Watanabe, M. Okumura, M. Haruta, ve N. Toshima, “Catalytically Highly Active Top Gold Atom on Palladium Nanocluster,” Nat. Mater., c. 11, s. 1, ss. 49–52, 2012.
  • [16] D. Cheng, W. Wang, ve S. Huang, “The Onion-Ring Structure for Pd-Pt Bimetallic Clusters,” J. Phys. Chem. B, c. 110, s. 33, ss. 16193–16196, 2006.
  • [17] I. Parsina ve F. Baletto, “Tailoring the Structural Motif of AgCo Nanoalloys: Core/Shell Versus Janus-Like,” J. Phys. Chem. C, c. 114, s. 3, ss. 1504–1511, 2010.
  • [18] N. Toshima, R. Ito, T. Matsushita, ve Y. Shiraishi, “Trimetallic Nanoparticles Having A Au-Core Structure,” Catal. Today, c. 122, s. 3–4, ss. 239–244, 2007.
  • [19] H. Zhang, M. Okumura, ve N. Toshima, “Stable Dispersions of PVP-Protected Au/Pt/Ag Trimetallic Nanoparticles as Highly Active Colloidal Catalysts for Aerobic Glucose Oxidation,” J. Phys. Chem. C, c. 115, s. 30, ss. 14883–14891, 2011.
  • [20] X. Zhang, F. Zhang, ve K. Y. Chan, “Preparation of Pt-Ru-Co Trimetallic Nanoparticles and Their Electrocatalytic Properties,” Catal. Commun., c. 5, s. 12, ss. 749–753, 2004.
  • [21] N. R. de Tacconi, W.-Y. Lin, W. Chanmanee, L. Nikiel, K. Rajeshwar, ve W. A. Wampler, “ Photocatalytically Generated Trimetallic (Pt-Pd-Au/C-TiO 2 ) Nanocomposite Electrocatalyst ,” J. Electrochem. Soc., c. 159, s. 7, ss. F226–F233, 2012.
  • [22] Z. Zhao, M. Li, D. Cheng, ve J. Zhu, “Understanding the Structural Properties and Thermal Stabilities of Au–Pd–Pt Trimetallic Clusters,” Chem. Phys., c. 441, ss. 152–158, Sep. 2014.
  • [23] G. H. Wu, Q. M. Liu, ve X. Wu, “Geometrical and Energetic Properties in 38-Atom Trimetallic AuPdPt Clusters,” Chem. Phys. Lett., c. 620, ss. 92–97, 2015.
  • [24] G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, ve R. Ferrando, “Magic Polyicosahedral Core-Shell Clusters,” Phys. Rev. Lett., c. 93, s. 10, 2004.
  • [25] M. Li ve D. Cheng, “Molecular Dynamics Simulation of the Melting Behavior of Crown-Jewel Structured Au-Pd Nanoalloys,” J. Phys. Chem. C, c. 117, s. 36, ss. 18746–18751, 2013.
  • [26] A. Rapallo, J. A. Olmos-Asar, O. A. Oviedo, M. Ludueña, R. Ferrando, and M. M. Mariscal, “Thermal Properties of Co/Au nanoalloys and Comparison of Different Computer Simulation Techniques,” J. Phys. Chem. C, c. 116, s. 32, ss. 17210–17218, 2012.
  • [27] R. Subbaraman ve S. K. R. S. Sankaranarayanan, “Effect of Ag Addition on the Thermal Characteristics and Structural Evolution of Ag-Cu-Ni Ternary Alloy Nanoclusters: Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., c. 84, s. 7, ss. 1–16, 2011.
  • [28] H. Akbarzadeh, M. Abbaspour, ve E. Mehrjouei, “Effect of Systematic Addition of the Third Component on the Melting Characteristics and Structural Evolution of Binary Alloy Nanoclusters,” J. Mol. Liq., c. 249, ss. 412–419, 2018.
  • [29] H. Akbarzadeh, E. Mehrjouei, S. Ramezanzadeh, ve C. Izanloo, “Ni-Co Bimetallic Nanoparticles with Core-Shell, Alloyed, and Janus Structures Explored by MD Simulation,” J. Mol. Liq., c. 248, ss. 1078–1095, 2017.
  • [30] H. Arslan ve A. E. Irmak, “Heat Capacity of 13- and 19-Atom Pd–Co Binary Clusters: Parallel Tempering Monte Carlo Study,” Int. J. Mod. Phys. C, c. 20, s. 11, ss. 1737–1747, 2009.
  • [31] H. Yıldırım ve H. Arslan, “CuAgAu Üçlü Nanoalaşımların Optimizasyonu ve Erime Dinamiği,” Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg., c. 21, s. 1, ss. 336–351, 2019.
  • [32] N. Zhang, F. Y. Chen, ve X. Q. Wu, “Global Optimization and Oxygen Dissociation on Polyicosahedral Ag32Cu6 Core-Shell Cluster for Alkaline Fuel Cells,” Sci. Rep., c. 5, s. June, ss. 1–12, 2015.
  • [33] P. Matczak ve S. Romanowski, “The Effect of Alloying on the H-atom Adsorption on the (100) Surfaces of Pd-Ag, Pd-Pt, Pd-Au, Pt-Ag, and Pt-Au. A Theoretical Study,” Cent. Eur. J. Chem., c. 9, s. 3, ss. 474–480, 2011.
  • [34] F. Cleri ve V. Rosato, “Tight-Binding Potentials for Transition Metals and Alloys,” Phys. Rev. B, c. 48, s. 1, ss. 22–33, 1993.
  • [35] A. Logsdail, L. O. Paz-Borbón, ve R. L. Johnston, “Structures and Stabilities of Platinum-Gold Nanoclusters,” J. Comput. Theor. Nanosci., c. 6, s. 4, ss. 857–866, 2009.
  • [36] C. Massen, T. V. Mortimer-Jones, ve R. L. Johnston, “Geometries and Segregation Properties of Platinum-Palladium Nanoalloy Clusters,” J. Chem. Soc. Dalt. Trans., s. 23, ss. 4375–4388, 2002.
  • [37] R. L. Johnston, L. O. Paz-Borbón, G. Barcaro, ve A. Fortunelli, “Structural Motifs, Mixing, and Segregation Effects in 38-atom Binary Clusters,” J. Chem. Phys., c. 128, s. 13, 2008.
  • [38] G. Rossi et al., “Global Optimization of Bimetallic Cluster Structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems.,” J. Chem. Phys., c. 122, s. 19, ss. 194309, 2005.
  • [39] D. J. Wales ve H. A. Scheraga, “Global Optimization of Clusters, Crystals, and Biomolecules,” Science, c. 285, s. 5432. ss. 1368–1372, 1999.
  • [40] I. T. Todorov, W. Smith, K. Trachenko, ve M. T. Dove, “DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism,” J. Mater. Chem., c. 16, s. 20, ss. 1911, 2006.
  • [41] I. J. Bush, I. T. Todorov, ve W. Smith, “A DAFT DL_POLY11URL: http://www.ccp5.ac.uk/DL_POLY. Distributed Memory Adaptation of the Smoothed Particle Mesh Ewald method,” Comput. Phys. Commun., c. 175, s. 5, ss. 323–329, 2006.
  • [42] H. A. Boateng ve I. T. Todorov, “Arbitrary Order Permanent Cartesian Multipolar Electrostatic Interactions,” J. Chem. Phys., c. 142, s. 3, 2015.
  • [43] Y. Shibuta ve T. Suzuki, “Phase Transition in Substrate-Supported Molybdenumnanoparticles: A Molecular Dynamics Study,” Phys. Chem. Chem. Phys., c. 12, s. 3, ss. 731–739, 2010.
  • [44] Y.-H. Wen, R. Huang, X.-M. Zeng, G.-F. Shao, ve S.-G. Sun, “Tetrahexahedral Pt–Pd Alloy Nanocatalysts with High-Index Facets: An Atomistic Perspective on Thermodynamic and Shape Stabilities,” J. Mater. Chem. A, c. 2, s. 5, ss. 1375–1382, 2014.
  • [45] X. Liu, H. Guo, ve C. Meng, “Melting of Bulk Gold During Continuous Heating: A Molecular Dynamics Study,” ICIC 2010 - 3rd Int. Conf. Inf. Comput., c. 4, s. 1, ss. 121–124, 2010.
  • [46] H. Akbarzadeh ve M. Abbaspour, “Different Morphologies of Aluminum Nanoclusters: Effect of Pressure on Solid-Liquid Phase Transition of the Nanoclusters Using Molecular Dynamics Simulations,” J. Mol. Liq., c. 230, ss. 20–23, Mar. 2017.
  • [47] A. L. Gould, A. J. Logsdail, ve C. R. A. Catlow, “Influence of Composition and Chemical Arrangement on the Kinetic Stability of 147-Atom Au-Ag Bimetallic Nanoclusters,” J. Phys. Chem. C, c. 119, s. 41, ss. 23685–23697, 2015.
  • [48] F. Chen, B. C. Curley, G. Rossi, ve R. L. Johnston, “Structure, Melting, and Thermal Stability of 55 Atom Ag-Au Nanoalloys,” J. Phys. Chem. C, c. 111, s. 26, ss. 9157–9165, 2007.
  • [49] F. Chen ve R. L. Johnston, “Martensitic Transformations in Ag-Au Bimetallic Core-Shell Nanoalloys,” Appl. Phys. Lett., c. 92, s. 2, 2008.
  • [50] Z. Kuntová, G. Rossi, ve R. Ferrando, “Melting of Core-Shell Ag-Ni and Ag-Co Nanoclusters Studied via Molecular Dynamics Simulations,” Phys. Rev. B - Condens. Matter Mater. Phys., c. 77, s. 20, ss. 1–8, 2008.
  • [51] C. Mottet, J. Goniakowski, F. Baletto, R. Ferrando, ve G. Treglia, “Modeling Free and Supported Metallic Nanoclusters: Structure and Dynamics,” in Phase Transitions, 2004, c. 77, s. 1–2, ss. 101–113.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Kemal Garip 0000-0002-9299-4641

Proje Numarası 2016-22794455-02
Yayımlanma Tarihi 30 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Garip, A. K. (2020). Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği. Duzce University Journal of Science and Technology, 8(2), 1732-1745. https://doi.org/10.29130/dubited.622000
AMA Garip AK. Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği. DÜBİTED. Nisan 2020;8(2):1732-1745. doi:10.29130/dubited.622000
Chicago Garip, Ali Kemal. “Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği”. Duzce University Journal of Science and Technology 8, sy. 2 (Nisan 2020): 1732-45. https://doi.org/10.29130/dubited.622000.
EndNote Garip AK (01 Nisan 2020) Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği. Duzce University Journal of Science and Technology 8 2 1732–1745.
IEEE A. K. Garip, “Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği”, DÜBİTED, c. 8, sy. 2, ss. 1732–1745, 2020, doi: 10.29130/dubited.622000.
ISNAD Garip, Ali Kemal. “Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği”. Duzce University Journal of Science and Technology 8/2 (Nisan 2020), 1732-1745. https://doi.org/10.29130/dubited.622000.
JAMA Garip AK. Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği. DÜBİTED. 2020;8:1732–1745.
MLA Garip, Ali Kemal. “Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği”. Duzce University Journal of Science and Technology, c. 8, sy. 2, 2020, ss. 1732-45, doi:10.29130/dubited.622000.
Vancouver Garip AK. Kesilmiş Oktahedron Yapısına Sahip PdnPt(6-n)Au32 Nanoalaşımlarının Erime Dinamiği. DÜBİTED. 2020;8(2):1732-45.