Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication and Electromagnetic Absorbing Properties of Hexagonal Ferrites

Yıl 2021, Cilt: 9 Sayı: 1, 1 - 6, 31.01.2021
https://doi.org/10.29130/dubited.818564

Öz

Nanocomposite materials were obtained by synthesizing Ba2Bi2Co2Fe12O22 Nano Particles with polyaniline and polyacrylonitrile polymers. Composites in this nanostructure; structural, magnetic and electromagnetic absorption properties were examined. It was observed from the x-ray analysis that the nano-structured particles had crystalline structure and shown Y-type hexagonal structure. It can be also seen from the IR measurements that it has this structure at 878 and 650 cm−1. The Electron Spin Resonance experiment of nanoparticles have been measured at room temperature and shown quite wide spectra and splitting factor. Vibration Sample Magnetometer measurements were made at 10-50 and room temperature. It can be said that nanoparticles useable so successful the magnetic recording media, applications of microwave technologies. Electromagnetic absorption experiments were measured approximately 5-20 GHz in the frequency band by used the free space method. These electromagnetic absorbers are using for 1,5 mm. thickness of the samples obtained 6 GHz. wide -50 db. loss of reflection was measured.

Teşekkür

Thank you to Uğur Cengiz for us help.

Kaynakça

  • [1] E.W, Gorter, “Saturation magnetization and crystal chemistry of ferrimagnetic oxides,” Philips Res. Repts., vol. 9, pp. 295-355, 1954.
  • [2] M.S. Selim, G. Turky ; Shouman M.A.; El-Shobaky G.A, “Effect of Li2O doping on electrical properties of CoFe2O4,” Solid State Ionics, vol. 120, pp. 173-181, 1999.
  • [3] G.A. Ozin,” Nanochemistry: Synthesis in diminishing dimensions,” Adv. Mater., vol. 4, pp. 612, 1992.
  • [4] H. Gleiter, “Nanostructured Materials,” Adv. Mater., vol. 4, pp. 474, 1992.
  • [5] J. Wang, Q. W. Chen, C. Zeng, B. Hou, “Magnetic‐Field‐Induced Growth of Single‐Crystalline Fe3O4 Nanowires,” Adv. Mater., vol. 16, pp. 137, 2004.
  • [6] RC. Pullar, “Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics,” Progress in Materials Science, vol. 57 no. 7, pp. 1191-1334, 2012.
  • [7] M. R. Meshram, N. K. Agrawal, B. Sinha, P.S. Misra,” Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” Journal of Magnetism and Magnetic Materials, vol. 271, pp. 207–214, 2004.
  • [8] H. Bayrakdar, “Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites” J. Alloys and Compounds, vol. 674, pp. 185-188, 2016.
  • [9] J. J. Temuujin, M. Aooyama, M. Senna, T. Masuko, C. Ando, H. Kishi, “Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method” J. Solid State Chem., vol. 177, pp. 221, 2004.
  • [10] C.C. Chauhan, R.B. Jotania, K.R. Jotania, “Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method,” Nanosystems: Physics, Chemistry, Mathematics, vol. 4, no. 3, pp. 363–369, 2013.
  • [11] H. Bayrakdar, “Electromagnetic Propagation and Absorbing Property of Ferrite-Polymer Nanocomposite Structure,” PIER M., vol. 25, pp. 269, 2012.

Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi

Yıl 2021, Cilt: 9 Sayı: 1, 1 - 6, 31.01.2021
https://doi.org/10.29130/dubited.818564

Öz

Nanokompozit malzemeler, Ba2Bi2Co2Fe12O22 Nano Partiküllerin polianilin ve poliakrilonitril polimerler ile sentezlenmesi ile elde edilmiştir. Bu nanoyapıdaki kompozitler; yapısal, manyetik ve elektromanyetik soğurma özellikleri incelenmiştir. X-ışını analizinden nano yapılı partiküllerin kristal yapıya sahip olduğu ve Y tipi altıgen yapı gösterdiği görülmüştür. 878 ve 650 cm-1'de bu yapıya sahip olduğu IR ölçümlerinden de görülebilmektedir. Nanopartiküllerin Elektron Spin Rezonans deneyi oda sıcaklığında ölçülmüş ve oldukça geniş spektrum ve bölünme faktörü gösterilmiştir. Titreşim Örneği Manyetometre ölçümleri 10-50 ve oda sıcaklığında yapılmıştır. Nanopartiküllerin, manyetik kayıt medyası, mikrodalga teknolojilerinin uygulamaları kadar başarılı olduğu söylenebilir. Elektromanyetik absorpsiyon deneyleri, frekans bandında serbest alan yöntemi kullanılarak yaklaşık 5-20 GHz ölçülmüştür. 1,5 mm. kalınlığındaki elektromanyetik soğurucu numuneler için 6 GHz. genişliğinde ve 50 db. yansıma kaybı ölçülmüştür.

Kaynakça

  • [1] E.W, Gorter, “Saturation magnetization and crystal chemistry of ferrimagnetic oxides,” Philips Res. Repts., vol. 9, pp. 295-355, 1954.
  • [2] M.S. Selim, G. Turky ; Shouman M.A.; El-Shobaky G.A, “Effect of Li2O doping on electrical properties of CoFe2O4,” Solid State Ionics, vol. 120, pp. 173-181, 1999.
  • [3] G.A. Ozin,” Nanochemistry: Synthesis in diminishing dimensions,” Adv. Mater., vol. 4, pp. 612, 1992.
  • [4] H. Gleiter, “Nanostructured Materials,” Adv. Mater., vol. 4, pp. 474, 1992.
  • [5] J. Wang, Q. W. Chen, C. Zeng, B. Hou, “Magnetic‐Field‐Induced Growth of Single‐Crystalline Fe3O4 Nanowires,” Adv. Mater., vol. 16, pp. 137, 2004.
  • [6] RC. Pullar, “Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics,” Progress in Materials Science, vol. 57 no. 7, pp. 1191-1334, 2012.
  • [7] M. R. Meshram, N. K. Agrawal, B. Sinha, P.S. Misra,” Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” Journal of Magnetism and Magnetic Materials, vol. 271, pp. 207–214, 2004.
  • [8] H. Bayrakdar, “Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites” J. Alloys and Compounds, vol. 674, pp. 185-188, 2016.
  • [9] J. J. Temuujin, M. Aooyama, M. Senna, T. Masuko, C. Ando, H. Kishi, “Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method” J. Solid State Chem., vol. 177, pp. 221, 2004.
  • [10] C.C. Chauhan, R.B. Jotania, K.R. Jotania, “Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method,” Nanosystems: Physics, Chemistry, Mathematics, vol. 4, no. 3, pp. 363–369, 2013.
  • [11] H. Bayrakdar, “Electromagnetic Propagation and Absorbing Property of Ferrite-Polymer Nanocomposite Structure,” PIER M., vol. 25, pp. 269, 2012.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Harun Bayrakdar 0000-0002-9065-9671

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

APA Bayrakdar, H. (2021). Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(1), 1-6. https://doi.org/10.29130/dubited.818564
AMA Bayrakdar H. Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi. DÜBİTED. Ocak 2021;9(1):1-6. doi:10.29130/dubited.818564
Chicago Bayrakdar, Harun. “Hegzagonal Ferritlerin İmalatı Ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, sy. 1 (Ocak 2021): 1-6. https://doi.org/10.29130/dubited.818564.
EndNote Bayrakdar H (01 Ocak 2021) Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 1 1–6.
IEEE H. Bayrakdar, “Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi”, DÜBİTED, c. 9, sy. 1, ss. 1–6, 2021, doi: 10.29130/dubited.818564.
ISNAD Bayrakdar, Harun. “Hegzagonal Ferritlerin İmalatı Ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/1 (Ocak 2021), 1-6. https://doi.org/10.29130/dubited.818564.
JAMA Bayrakdar H. Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi. DÜBİTED. 2021;9:1–6.
MLA Bayrakdar, Harun. “Hegzagonal Ferritlerin İmalatı Ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 9, sy. 1, 2021, ss. 1-6, doi:10.29130/dubited.818564.
Vancouver Bayrakdar H. Hegzagonal Ferritlerin İmalatı ve Elektromanyetik Soğurma Özelliklerinin İncelenmesi. DÜBİTED. 2021;9(1):1-6.