Araştırma Makalesi
BibTex RIS Kaynak Göster

Solidity Optimization for an H-Darrieus Wind Turbine

Yıl 2021, Cilt: 9 Sayı: 2, 535 - 544, 25.04.2021
https://doi.org/10.29130/dubited.813917

Öz

Solidity is one of the main factors that influence the performance of a wind turbine. The solidity of an H-Darrieus wind turbine is optimized in terms of blade number, chord length, and rotor radius to get the maximum power coefficient using Taguchi L16 (4^3) array. Power coefficient values are calculated by the Double Multiple Stream Tube model by in house built MATLAB code according to Taguchi orthogonal array. The maximum power coefficient is found as 0.4728 for the two-bladed rotor with a chord length of 0.2 m and a radius of 2 m. Relation of maximum power coefficient respect to blade number, chord length, and rotor radius is derived. Predicted mean values of the maximum power coefficient are in agreement with calculated values. Furthermore, an equation for the maximum power coefficient is obtained for rotor solidity. Derived equations can be useful to estimate the maximum power coefficient values of H-Darrieus wind turbines.

Kaynakça

  • [1] E. K. Akpinar, “A statistical investigation of wind energy potential,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 28, no. 9, pp. 807–820, 2006.
  • [2] S. Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Berlin Heidelberg, Netherlands: Springer-Verlag 2006.
  • [3] G. Bedon, U. S. Paulsen, H. A. Madsen, F. Belloni, M. R. Castelli, and E. Benini, “Aerodynamic Benchmarking of the Deepwind Design,” Energy Procedia, vol. 75, pp. 677–682, 2015. [4] J. Chen, L. Chen, H. Xu, H. Yang, C. Ye, and D. Liu, “Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family,” Energy, vol. 114, pp. 318–331, 2016.
  • [5] G. Bedon, S. De Betta, and E. Benini, “Performance-optimized airfoil for Darrieus wind turbines,” Renew. Energy, vol. 94, pp. 328–340, 2016.
  • [6] M. Abdul Akbar and V. Mustafa, “A new approach for optimization of Vertical Axis Wind Turbines,” J. Wind Eng. Ind. Aerodyn., vol. 153, pp. 34–45, 2016.
  • [7] R. J. Templin, “Aerodynamic performance theory for the NRC vertical-axis wind turbine,” Natl. Res. Counc. Canada, 1974.
  • [8] J. Strickland, “The Darrieus Turbine: A Performance Prediction Model Using Multiple Stream Tubes,” Technical Report SAND75-041, Sandia National Laboratories, Albuquerque, 1975.
  • [9] I. Paraschivoiu, “Double-Multiple Streamtube Model for Darrieus Wind Turbines,” Tech. Rep., Institute de recherché d’Hydro-Québec, Canada, 1983.
  • [10] S. Brusca, R. Lanzafame, and M. Messina, “Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance,” Int. J. Energy Environ. Eng., vol. 5, no. 4, pp. 333–340, 2014.
  • [11] T. J. Carrigan, B. H. Dennis, Z. X. Han, and B. P. Wang, “Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution,” ISRN Renew. Energy, vol. 2012, pp. 1–16, 2012.
  • [12] L. Du, G. Ingram, and R. G. Dominy, “Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance,” Energy Sci. Eng., vol. 7, no. 6, pp. 2421–2436, 2019.
  • [13] H. Zhu, W. Hao, C. Li, and Q. Ding, “Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap,” J. Wind Eng. Ind. Aerodyn., vol. 186, pp. 17–31, 2019.
  • [14] M. A. Miller, S. Duvvuri, W. D. Kelly, and M. Hultmark, “Rotor solidity effects on the performance of vertical-axis wind turbines at high Reynolds numbers,” J. Phys. Conf. Ser., vol. 1037, no. 5, 2018.
  • [15] L. Nguyen and M. Metzger, “Optimization of a vertical axis wind turbine for application in an urban/suburban area,” J. Renew. Sustain. Energy, vol. 9, no. 4, 2017.
  • [16] M. T. Parra-Santos, C. N. Uzarraga, A. Gallegos, and F. Castro, “Influence of Solidity on Vertical Axis Wind Turbines,” Int. J. Appl. Math. Electron. Comput., vol. 3, no. 3, p. 215, 2015.
  • [17] A. Rezaeiha, H. Montazeri, and B. Blocken, “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades,” Energy, vol. 165, pp. 1129–1148, 2018.
  • [18] G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi’s Quality Engineering Handbook, Wiley&Sons, 2004.
  • [19] J. Kjellin, F. Bülow, S. Eriksson, P. Deglaire, M. Leijon, and H. Bernhoff, “Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine”, Renew. Energy, vol. 36, pp. 3050–3053, 2011.

Bir H-Darrieus Rüzgar Türbini için Solidite Optimizasyonu

Yıl 2021, Cilt: 9 Sayı: 2, 535 - 544, 25.04.2021
https://doi.org/10.29130/dubited.813917

Öz

Solidite bir rüzgar türbini performansını etkileyen ana faktörler arasında yer almaktadır. Bir H-Darrieus rüzgar türbininin maksimum güç katsayısını veren soliditesi kanat sayısı, kord uzunluğu ve rotor yarıçapı cinsinden Taguchi L16 (4^3) dizisi kullanılarak optimize edilmiştir. Güç katsayısı değerlerinin hesaplamasında Taguchi ortogonal dizisine göre MATLAB yardımıyla Çift Çoklu Akım Tüpü modeli için geliştirilmiş kod kullanılmıştır. En yüksek güç katsayısı 0.4728 değeri iki-kanatlı, 0.2 m kord uzunluğunda ve yarıçapı 2 m olan rotor için bulunmuştur. En yüksek güç katsayısı değeri için kanat sayısı, kord uzunluğu ve rotor yarıçapı cinsinden bir bağıntı elde edilmiştir. Tahmini ortalama en yüksek güç katsayısı değerleri ile hesaplanan değerler uyum içerisinde bulunmuştur. Ayrıca, en yüksek güç katsayısı için rotor soliditesi cinsinden bir denklem elde edilmiştir. Elde edilen denklemler H-Darrieus rüzgar türbinlerinin en yüksek güç katsayılarını tahmin etmekte kullanılabilir.

Kaynakça

  • [1] E. K. Akpinar, “A statistical investigation of wind energy potential,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 28, no. 9, pp. 807–820, 2006.
  • [2] S. Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Berlin Heidelberg, Netherlands: Springer-Verlag 2006.
  • [3] G. Bedon, U. S. Paulsen, H. A. Madsen, F. Belloni, M. R. Castelli, and E. Benini, “Aerodynamic Benchmarking of the Deepwind Design,” Energy Procedia, vol. 75, pp. 677–682, 2015. [4] J. Chen, L. Chen, H. Xu, H. Yang, C. Ye, and D. Liu, “Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family,” Energy, vol. 114, pp. 318–331, 2016.
  • [5] G. Bedon, S. De Betta, and E. Benini, “Performance-optimized airfoil for Darrieus wind turbines,” Renew. Energy, vol. 94, pp. 328–340, 2016.
  • [6] M. Abdul Akbar and V. Mustafa, “A new approach for optimization of Vertical Axis Wind Turbines,” J. Wind Eng. Ind. Aerodyn., vol. 153, pp. 34–45, 2016.
  • [7] R. J. Templin, “Aerodynamic performance theory for the NRC vertical-axis wind turbine,” Natl. Res. Counc. Canada, 1974.
  • [8] J. Strickland, “The Darrieus Turbine: A Performance Prediction Model Using Multiple Stream Tubes,” Technical Report SAND75-041, Sandia National Laboratories, Albuquerque, 1975.
  • [9] I. Paraschivoiu, “Double-Multiple Streamtube Model for Darrieus Wind Turbines,” Tech. Rep., Institute de recherché d’Hydro-Québec, Canada, 1983.
  • [10] S. Brusca, R. Lanzafame, and M. Messina, “Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance,” Int. J. Energy Environ. Eng., vol. 5, no. 4, pp. 333–340, 2014.
  • [11] T. J. Carrigan, B. H. Dennis, Z. X. Han, and B. P. Wang, “Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution,” ISRN Renew. Energy, vol. 2012, pp. 1–16, 2012.
  • [12] L. Du, G. Ingram, and R. G. Dominy, “Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance,” Energy Sci. Eng., vol. 7, no. 6, pp. 2421–2436, 2019.
  • [13] H. Zhu, W. Hao, C. Li, and Q. Ding, “Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap,” J. Wind Eng. Ind. Aerodyn., vol. 186, pp. 17–31, 2019.
  • [14] M. A. Miller, S. Duvvuri, W. D. Kelly, and M. Hultmark, “Rotor solidity effects on the performance of vertical-axis wind turbines at high Reynolds numbers,” J. Phys. Conf. Ser., vol. 1037, no. 5, 2018.
  • [15] L. Nguyen and M. Metzger, “Optimization of a vertical axis wind turbine for application in an urban/suburban area,” J. Renew. Sustain. Energy, vol. 9, no. 4, 2017.
  • [16] M. T. Parra-Santos, C. N. Uzarraga, A. Gallegos, and F. Castro, “Influence of Solidity on Vertical Axis Wind Turbines,” Int. J. Appl. Math. Electron. Comput., vol. 3, no. 3, p. 215, 2015.
  • [17] A. Rezaeiha, H. Montazeri, and B. Blocken, “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades,” Energy, vol. 165, pp. 1129–1148, 2018.
  • [18] G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi’s Quality Engineering Handbook, Wiley&Sons, 2004.
  • [19] J. Kjellin, F. Bülow, S. Eriksson, P. Deglaire, M. Leijon, and H. Bernhoff, “Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine”, Renew. Energy, vol. 36, pp. 3050–3053, 2011.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Özgün Korukçu 0000-0002-4761-4304

Yayımlanma Tarihi 25 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Korukçu, M. Ö. (2021). Solidity Optimization for an H-Darrieus Wind Turbine. Duzce University Journal of Science and Technology, 9(2), 535-544. https://doi.org/10.29130/dubited.813917
AMA Korukçu MÖ. Solidity Optimization for an H-Darrieus Wind Turbine. DÜBİTED. Nisan 2021;9(2):535-544. doi:10.29130/dubited.813917
Chicago Korukçu, Mehmet Özgün. “Solidity Optimization for an H-Darrieus Wind Turbine”. Duzce University Journal of Science and Technology 9, sy. 2 (Nisan 2021): 535-44. https://doi.org/10.29130/dubited.813917.
EndNote Korukçu MÖ (01 Nisan 2021) Solidity Optimization for an H-Darrieus Wind Turbine. Duzce University Journal of Science and Technology 9 2 535–544.
IEEE M. Ö. Korukçu, “Solidity Optimization for an H-Darrieus Wind Turbine”, DÜBİTED, c. 9, sy. 2, ss. 535–544, 2021, doi: 10.29130/dubited.813917.
ISNAD Korukçu, Mehmet Özgün. “Solidity Optimization for an H-Darrieus Wind Turbine”. Duzce University Journal of Science and Technology 9/2 (Nisan 2021), 535-544. https://doi.org/10.29130/dubited.813917.
JAMA Korukçu MÖ. Solidity Optimization for an H-Darrieus Wind Turbine. DÜBİTED. 2021;9:535–544.
MLA Korukçu, Mehmet Özgün. “Solidity Optimization for an H-Darrieus Wind Turbine”. Duzce University Journal of Science and Technology, c. 9, sy. 2, 2021, ss. 535-44, doi:10.29130/dubited.813917.
Vancouver Korukçu MÖ. Solidity Optimization for an H-Darrieus Wind Turbine. DÜBİTED. 2021;9(2):535-44.