Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods

Yıl 2021, Cilt: 9 Sayı: 4, 1493 - 1506, 31.07.2021
https://doi.org/10.29130/dubited.882634

Öz

This study focused on the determination of quality characteristics of homemade organic vinegars (apple, red hawthorn and yellow hawthorn) which were produced with double fermentation (ethyl alcohol and acetic acid fermentation) method by spectroscopy (UV/Fourier transform infrared) and rheology technique. These absorbance peak values are associated with organic acids and phenolic compounds were determined as an important parameter in the quality evaluation of vinegars. It was determined that the flow curves of all vinegars are compatible with the non-Newtonian flow, which is the behaviour of thickening (dilatant) fluids. From the obtained results, it was thought that the antioxidant and anti-bacterial effect of yellow hawthorn vinegar would be higher due to its higher acetic acid and phenolic compound content compared to the others.

Kaynakça

  • [1] O. Yalçın, C. Tekgündüz, M. Öztürk and E. Tekgündüz, “Investigation of the traditional organic vinegars by UV–VIS spectroscopy and rheology techniques,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 246, pp.118987, 2021.
  • [2] M. R. Adams, Vinegar, in: B.J.B. Woods (Ed.), “Microbiology of Fermented Foods,” Blackie Academic and Professional, London, pp. 1–44, 1998.
  • [3] T. Nakayama, “Studies on acetic acid-bacteria I. Biochemical studies on ethanol oxidation,” J. Biochem, vol. 46, no. 9, pp. 1217–25, 1959.
  • [4] W. Tesfaye, M. L. Morales, M. C. Garcia-Prailla and A. M. Troncoso, “Wine vinegar: technology, authenticity and quality evaluation,” Trends in Food Science & Technology, vol. 13, pp. 12–21, 2002.
  • [5] Y. Shimoji, Y. Tamura, Y. Nakamura, K. Nanda, S. Nishidai, Y. Nishikawa, N. Ishihara, K. Uenakai and H. Ohigashi, “Isolation and identification of DPPH radical scavenging compounds in kurosu (Japanese unpolished rice vinegar),” Journal of Agricultural and Food Chemistry, vol. 50, pp. 6501–6503, 2002.
  • [6] S. Sakanaka and Y. Ishihara, “Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates,” Food Chemistry, vol. 107, pp. 739–744, 2008.
  • [7] I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore and D. Bonaduce, “Oxidative stress, aging, and diseases,” Clin. Interv. Aging, vol. 13, pp. 757–772, 2018.
  • [8] I. Ozturk, O. Caliskan, F. Tornuk, N. Ozcan, H. Yalcin, M. Baslar and O. Sagdic, “Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars,” LWT-Food Science and Technology, vol. 63, pp. 144–151, 2015.
  • [9] Q. Liu, G. Y. Tang, C. N. Zhao, R. Y. Gan and H. B. Li, "Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars,” Antioxidants, vol. 8, pp. 78–90, 2019.
  • [10] N. Pellegrini, M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi and F. Brighenti, “Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays,” J. Nutr., vol. 133, pp. 2812–2819, 2003.
  • [11] H. Y. Chen, T. Chen, P. Giudici and F. S. Chen, “Vinegar functions on health: Constituents, sources, and formation mechanisms,” Compr. Rev. Food. Sci. Food Saf., vol. 15, pp. 1124–1138, 2016.
  • [12] D. Bertelli, A. Maietti, G. Papotti, P. Tedeschi, G. Bonetti, R. Graziosi, V. Brandolini and M. Plessi, “Antioxidant activity, phenolic compounds, and NMR characterization of balsamic and traditional balsamic vinegar of modena,” Food Anal Method, vol. 8, pp. 371–9, 2015.
  • [13] H. Chen, T. Chen, P. Giudici and F. Chen, “Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms,” Comprehensive Reviews in Food Science and Food Safety, vol.15, pp. 1124–1138, 2016.
  • [14] D. Yagnik, V. Serafn and A. J. Shah, “Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression,” Scientific Reports, vol. 8, pp. 1732–12, 2018.
  • [15] E. I. Petsiou, P. I. Mitrou, S. A. Raptis and G. D. Dimitriadis, “Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight,” Nutrition Reviews, vol. 72, no.10, 651–661, 2014.
  • [16] T. Fushimi, K. Suruga, Y. Oshima, M. Fukiharu, Y. Tsukamoto and T. Goda, “Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet,” British Journal of Nutrition, vol. 95, pp. 916–924, 2006.
  • [17] N. Baba, Y. Higashi and T. Kanekura, “Japanese Black Vinegar “Izumi” Inhibits the Proliferation of Human Squamous Cell Carcinoma Cells Via Necroptosis,” Nutrition and Cancer, vol. 65, no. 7, pp. 1093–1097, 2013.
  • [18] J. De Dios Lozano, B. I. Ju´arez-Flores, J. M. Pinos-Rodr´ıguez, J. Aguirte-Rivera and G. Alvarez-Fuentez, “Supplementary effects of vinegar on body weight and blood metabolites in healthy rats fed conventional diets and obese rats fed high-caloric diets,” J. Med Plants Res., vol. 6, pp. 4135–41, 2012.
  • [19] Z. Kadas, G. Akdemir Evrendilek and G. Heper, “The Metabolic Effects of Hawthorn Vinegar in Patients with High Cardiovascular Risk Group,” Journal of Food and Nutrition Research, vol. 2, no. 9, pp. 539–545, 2014.
  • [20] M. Golzarand, M. Ebrahimi-Mamaghani, S. R. Arefhosseini and A. Ali Asgarzadeh, “Effect of processed Berberis vulgaris in apple vinegar on blood pressure and inflammatory markers in type 2 diabetic patients,” Journal of Diabetes and Metabolic Disorders, vol. 8, pp. 15–20, 2008.
  • [21] P. Kadiroğlu, “FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics,” J. Sci Food Agri, vol. 98, pp. 4121–4127, 2018.
  • [22] E. F. Boffo, L. A. Tavares, M. M. C. Ferreira and A. G. Ferreira, “Classification of Brazilian vinegars according to their H NMR spectra by pattern recognition analysis,” LWT-Food Science and Technology, vol. 42, pp. 1455–1460, 2009.
  • [23] Y. Kong, L. L. Zhang, Y. Sun, Y. Y. Zhang, B. G. Sun and H. T. Chen, “Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars,” Journal of Food Science, vol. 82, pp. 1116–1123, 2017.
  • [24] D. Carlavilla, M. V. Moreno-Arribas, S. Fanali and A. Cifuentes, “Chiral MEKC-LIF of amino acids in foods:Analysis of vinegars,” Electrophoresis, vol. 27, pp. 2551–2557, 2006.
  • [25] H. D. Xie, L. J. Bu, X. W. Peng and Z. X. Li, “Ultraviolet Spectroscopy Method for Classifying Vinegars,” Advanced Materials Research, vol. 346, pp. 865–874, 2011.
  • [26] L. Fu, X. du Nie, H. L. Xie and M. D. Ferro, “Rapid multi-element analysis of Chinese vinegar by sector field inductively coupled plasma mass spectrometry,” Eur. Food Res. Technol., vol. 237, pp. 795–800, 2013.
  • [27] Y. Yin, H. Yu and H. Zhang, “A feature extraction method based on wavelet packet analysis for discrimination of Chinese vinegars using a gas sensors array,” Sensors and Actuators B: Chemical, vol. 134, 1005–1009, 2008.
  • [28] S. R. Oliveira, A. P. Oliveira and J. A. Gomes Neto, “Tungsten permanent chemical modifier with co-injection of Pd(NO3)2 + Mg(NO3)2 for direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry,” Food Chemistry, vol. 105, pp. 236–241, 2007.
  • [29] Z. Xiao, S. Dai, Y. Niu, H. Yu, J. Zhu, H. Tian and Y. Gu, “Discrimination of Chinese Vinegars Based on Headspace Solid‐Phase Microextraction Gas Chromatography Mass Spectrometry of Volatile Compounds and Multivariate Analysis,” Journal of Food Science, vol. 76, pp. 1125–1135, 2011.
  • [30] E. García Romero, G. Sánchez Muñoz, P. J. Martín Alvarez and M. D. Cabezudo Ibáñez, “Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography,” Journal of Chromatography A, vol. 655, pp. 111–117, 1993.
  • [31] T. Owen, “Fundamentals of UV-visible Spectroscopy,” Hewlett-Packard Company, Germany, vol. 12, pp. 14–25, 1996.
  • [32] K. Ravikumar, S. Agilan, M. Raja, R. Marnadu, T. Alshahrani, Mohd Shkir, M. Balaji and R. Ganesh, “Investigation on microstructural and opto-electrical properties of Zr-doped SnO2 thin films for Al/Zr:SnO2/p-Si Schottky barrier diode application,” Physica B: Physics of Condensed Matter, vol. 599, pp. 412452, 2020.
  • [33] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Materials Research Bulletin, vol. 3, pp. 37–46, 1968.
  • [34] A. Krishnan, K. Rishad Ali, G. Vishnu and P. Kannan, “Towards phase pure CZTS thin films by SILAR method with augmented Zn adsorption for photovoltaic applications,” Materials for Renewable and Sustainable Energy, vol. 8, pp. 16–8, 2019.
  • [35] M. Öztürk, M. Okutan, R. Coşkun, B. Çolak and O. Yalçın, “Evaluation of the effect of dose change of Fe3O4 nanoparticles on electrochemical biosensor compatibility using hydrogels as an experimental living organism model,” Journal of Molecular Liquids, vol. 322, pp. 114574, 2021.
  • [36] R. Coşkun, M. Okutan, M. Öztürk and O. Yalçın, “Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems,” Journal of Molecular Liquids, vol. 296, pp. 112072, 2019.
  • [37] G. K. Batchelor, “An Introduction to Fluid Dynamics. Cambridge Mathematical Library series,” Cambridge University Press,1967.
  • [38] R. L. Panton, “Incompressible Flow,” (Fourth ed.). Hoboken: John Wiley & Sons., pp. 111-126, 2013.
  • [39] R. P. Chhabra and J. F. Richardson, “Non-Newtonian Flow and Applied Rheology,” Second Edition, Elsevier Ltd., pp. 1–109, 2008.
  • [40] A. Ibarz, C. Gonzalez, S. Esplugas, "Rheology of clarified fruit juices. III: Orange juices,” Journal of Food Engineering, vol. 21, pp. 485–494, 1994.
  • [41] K. M. Lynch, E. Zannini, S. Wilkinson, L. Daenen and E. K. Arendt, “Physiology of acetic acid bacteria and their role in vinegar and fermented beverages,” Compr. Rev. Food Sci. Food Saf., vol. 18, 587–625, 2019.
  • [42] S. Beis, M. Binder, K. Varmuza, A. Miltner and A. Fried, “UV-Vis Spectroscopy and Chemometrics for the Monitoring of Organosolv Pretreatments,” Chem. Engineering, vol. 45, pp. 2–14, 2018.
  • [43] G. Ruderman, E. R. Caffarena, I. G. Mogilner and E. J. Tolosa, “Hydrogen Bonding of Carboxylic Acids in Aqueous Solutions—UV Spectroscopy, Viscosity, and Molecular Simulation of Acetic Acid,” Journal of Solution Chemistry, vol. 27, pp. 935–948, 1998.
  • [44] L. Wang, J. Yang, Q. Lin, L. Xiang, Z. Song, Y. Zhang, L. Chen, “Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector”, Journal of Zhejiang University (Agriculture and Life Sciences), vol. 45, pp. 47–53, 2019.
  • [45] Z. Wang, F. Liu, Y. He, “Comparison and Determination of Acetic Acid of Plum Vinegar Using Visible/Near Infrared Spectroscopy and Multivariate Calibration”, Computer Science and Information Engineering, vol. 7, pp. 201–204, 2009.
  • [46] J. L. Aleixandre Tudo and W. du Toit, “The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking,” Frontiers and New Trends in the Science of Fermented Food and Beverages by R. L. Oviedo, Á. D. C. Pech Canul, Intech Open, pp. 1–22, 2019.
  • [47] M. J. Kamlet and R. W. Taft, “The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities,” Journal of the American Chemical Society, vol. 98 no. 2, pp. 377–383, 1976.
  • [48] C. E. Lund Myhre and C. J. Nielsen, “Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols,” Atmos. Chem. Phys., vol. 4 pp. 1759–1769, 2004. [49] K. Mitchell, A. L. Fahrenbruch and R. H. Bube, “Photovoltaic determination of optical absorption coefficient in CdTe,” J. Appl. Phys., vol. 48, pp. 829–830, 1977.
  • [50] A. Singh, A. Singh, S. Singh, P. Tandon, B. C. Yadav and R. R. Yadav, “Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications,” J. Alloy. Compd., vol. 618, pp. 475–48, 2015.
  • [51] P. Chand, S. Vaish and P. Kumar, “Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites,” Physica B, vol. 524, pp. 53–63, 2017.
  • [52] Ç. Bilkan, Y. Azizian Kalandaragh, Ş. Altındal and R. Shokrani Havigh, “Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures,” Physica B: Condensed Matter, vol. 500, pp. 154–160, 2016.
  • [53] P. M. Falcone and P. Giudici, “Molecular size and molecular size distribution affecting traditional balsamic vinegar aging,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 7057–7066, 2008.
  • [54] H. F. George and F. Qureshi, “Newton’s Law of Viscosity, Newtonian and Non-Newtonian Fluids”, In: Wang Q. J., Chung Y. W. (eds) Encyclopedia of Tribology. Springer, Boston, pp. 22-109, 2013.
  • [55] I.M. Krieger, T.J. Dougherty, “A mechanism for non-newtonian flow in suspensions of rigid spheres”, Transactions of the Society of Rheology, vol. 3, no. 1, pp. 137–152, 1959.
  • [56] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries Fundamentals and Engineering Applications, 1st Ed., Butterworth-Heinemann, USA, pp. 37–72, 1999.
  • [57] E. Vafa, R. Bazargan Lari and M. Ebrahim Bahrololoom, “Synthesis of 45S5 bioactive glass-ceramic using the-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar,” Journal of Materials Research and Technology, vol. 10, pp. 1427–1436, 2021.
  • [58] D. Dong, W. Zheng, L. Jiao, Y. Lang and X. Zhao, “Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics,” Food Chemistry, vol. 194, pp. 95–100, 2016.
  • [59] S. Bakir, D. Devecioglu, S. Kayacan, G. Toydemir, F. Karbancioglu Guler and E. Capanoglu, “Investigating the antioxidant and antimicrobial activities of different vinegars,” Eur. Food. Res. Technol., vol. 243, pp. 2083–2094, 2017.

Ev Yapımı Sirkelerde Kalitenin Spektroskopi ve Reoloji Yöntemleriyle Belirlenmesi

Yıl 2021, Cilt: 9 Sayı: 4, 1493 - 1506, 31.07.2021
https://doi.org/10.29130/dubited.882634

Öz

Bu çalışma, çift mayalanma (etil alkol ve akabinde asetik asit mayalanması) yöntemi ile üretilen ev yapımı organik sirkelerin (elma, kırmızı alıç ve sarı alıç) kalitesinin spektroskopi (UV/Fourier dönüşümü kızılötesi) ve reoloji tekniği ile belirlenmesine odaklanmıştır. UV spektrumları 190-600 nm dalga boyu aralığında incelenen ev yapımı sirkelerin sırasıyla 190-240 nm ve 250-300 nm dalga boyu aralıklarında asetik asit ve fenolik bileşik konsantrasyonlarından kaynaklanan iki tepe (pik) değerine sahip olduğu belirlendi. Organik asitler ve fenolik bileşiklerle ilişkili bu absorbans tepe değerleri, sirkelerin kalite değerlendirmesinde önemli bir parametre olarak saptandı. Organik asitlerin maruz kaldığı kuantum hapsetme etkisinin salım süresi üzerinde etkili olduğu için sirkelerin kalitesini belirleyen yasak enerji boşluklarını etkilediği öngörüldü. Numunelerin akış davranışını belirleyen viskozite değerleri 10-3 ile 102 s-1 kayma hızı aralığında kaydedildi. Tüm sirkelerin akış eğrilerinin, kıvamlaştırıcı (dilatant) akışkanların davranışı olan Newton olmayan akışla uyumlu olduğu belirlendi. Oda sıcaklığında 4200 cm-1 ile 400 cm-1 dalga sayısı aralığında FTIR spektrumları alınan sirkelerin spektral parmak izlerinden tüm örneklerin asetik asit ve su karışımı içerdiği doğrulandı. Elde edilen sonuçlardan sarı alıç sirkesinin daha yüksek asetik asit ve fenolik bileşik içeriği nedeniyle antioksidan ve anti bakteriyel etkisinin diğerlerine göre daha yüksek olacağı öngörüldü. Ayrıca ev yapımı sirkelerin, her türlü gıda analizi yapılmış endüstriyel (ticari) sirkelere benzer nitelikte olduğu sonucuna varıldı.

Kaynakça

  • [1] O. Yalçın, C. Tekgündüz, M. Öztürk and E. Tekgündüz, “Investigation of the traditional organic vinegars by UV–VIS spectroscopy and rheology techniques,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 246, pp.118987, 2021.
  • [2] M. R. Adams, Vinegar, in: B.J.B. Woods (Ed.), “Microbiology of Fermented Foods,” Blackie Academic and Professional, London, pp. 1–44, 1998.
  • [3] T. Nakayama, “Studies on acetic acid-bacteria I. Biochemical studies on ethanol oxidation,” J. Biochem, vol. 46, no. 9, pp. 1217–25, 1959.
  • [4] W. Tesfaye, M. L. Morales, M. C. Garcia-Prailla and A. M. Troncoso, “Wine vinegar: technology, authenticity and quality evaluation,” Trends in Food Science & Technology, vol. 13, pp. 12–21, 2002.
  • [5] Y. Shimoji, Y. Tamura, Y. Nakamura, K. Nanda, S. Nishidai, Y. Nishikawa, N. Ishihara, K. Uenakai and H. Ohigashi, “Isolation and identification of DPPH radical scavenging compounds in kurosu (Japanese unpolished rice vinegar),” Journal of Agricultural and Food Chemistry, vol. 50, pp. 6501–6503, 2002.
  • [6] S. Sakanaka and Y. Ishihara, “Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates,” Food Chemistry, vol. 107, pp. 739–744, 2008.
  • [7] I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore and D. Bonaduce, “Oxidative stress, aging, and diseases,” Clin. Interv. Aging, vol. 13, pp. 757–772, 2018.
  • [8] I. Ozturk, O. Caliskan, F. Tornuk, N. Ozcan, H. Yalcin, M. Baslar and O. Sagdic, “Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars,” LWT-Food Science and Technology, vol. 63, pp. 144–151, 2015.
  • [9] Q. Liu, G. Y. Tang, C. N. Zhao, R. Y. Gan and H. B. Li, "Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars,” Antioxidants, vol. 8, pp. 78–90, 2019.
  • [10] N. Pellegrini, M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi and F. Brighenti, “Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays,” J. Nutr., vol. 133, pp. 2812–2819, 2003.
  • [11] H. Y. Chen, T. Chen, P. Giudici and F. S. Chen, “Vinegar functions on health: Constituents, sources, and formation mechanisms,” Compr. Rev. Food. Sci. Food Saf., vol. 15, pp. 1124–1138, 2016.
  • [12] D. Bertelli, A. Maietti, G. Papotti, P. Tedeschi, G. Bonetti, R. Graziosi, V. Brandolini and M. Plessi, “Antioxidant activity, phenolic compounds, and NMR characterization of balsamic and traditional balsamic vinegar of modena,” Food Anal Method, vol. 8, pp. 371–9, 2015.
  • [13] H. Chen, T. Chen, P. Giudici and F. Chen, “Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms,” Comprehensive Reviews in Food Science and Food Safety, vol.15, pp. 1124–1138, 2016.
  • [14] D. Yagnik, V. Serafn and A. J. Shah, “Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression,” Scientific Reports, vol. 8, pp. 1732–12, 2018.
  • [15] E. I. Petsiou, P. I. Mitrou, S. A. Raptis and G. D. Dimitriadis, “Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight,” Nutrition Reviews, vol. 72, no.10, 651–661, 2014.
  • [16] T. Fushimi, K. Suruga, Y. Oshima, M. Fukiharu, Y. Tsukamoto and T. Goda, “Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet,” British Journal of Nutrition, vol. 95, pp. 916–924, 2006.
  • [17] N. Baba, Y. Higashi and T. Kanekura, “Japanese Black Vinegar “Izumi” Inhibits the Proliferation of Human Squamous Cell Carcinoma Cells Via Necroptosis,” Nutrition and Cancer, vol. 65, no. 7, pp. 1093–1097, 2013.
  • [18] J. De Dios Lozano, B. I. Ju´arez-Flores, J. M. Pinos-Rodr´ıguez, J. Aguirte-Rivera and G. Alvarez-Fuentez, “Supplementary effects of vinegar on body weight and blood metabolites in healthy rats fed conventional diets and obese rats fed high-caloric diets,” J. Med Plants Res., vol. 6, pp. 4135–41, 2012.
  • [19] Z. Kadas, G. Akdemir Evrendilek and G. Heper, “The Metabolic Effects of Hawthorn Vinegar in Patients with High Cardiovascular Risk Group,” Journal of Food and Nutrition Research, vol. 2, no. 9, pp. 539–545, 2014.
  • [20] M. Golzarand, M. Ebrahimi-Mamaghani, S. R. Arefhosseini and A. Ali Asgarzadeh, “Effect of processed Berberis vulgaris in apple vinegar on blood pressure and inflammatory markers in type 2 diabetic patients,” Journal of Diabetes and Metabolic Disorders, vol. 8, pp. 15–20, 2008.
  • [21] P. Kadiroğlu, “FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics,” J. Sci Food Agri, vol. 98, pp. 4121–4127, 2018.
  • [22] E. F. Boffo, L. A. Tavares, M. M. C. Ferreira and A. G. Ferreira, “Classification of Brazilian vinegars according to their H NMR spectra by pattern recognition analysis,” LWT-Food Science and Technology, vol. 42, pp. 1455–1460, 2009.
  • [23] Y. Kong, L. L. Zhang, Y. Sun, Y. Y. Zhang, B. G. Sun and H. T. Chen, “Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars,” Journal of Food Science, vol. 82, pp. 1116–1123, 2017.
  • [24] D. Carlavilla, M. V. Moreno-Arribas, S. Fanali and A. Cifuentes, “Chiral MEKC-LIF of amino acids in foods:Analysis of vinegars,” Electrophoresis, vol. 27, pp. 2551–2557, 2006.
  • [25] H. D. Xie, L. J. Bu, X. W. Peng and Z. X. Li, “Ultraviolet Spectroscopy Method for Classifying Vinegars,” Advanced Materials Research, vol. 346, pp. 865–874, 2011.
  • [26] L. Fu, X. du Nie, H. L. Xie and M. D. Ferro, “Rapid multi-element analysis of Chinese vinegar by sector field inductively coupled plasma mass spectrometry,” Eur. Food Res. Technol., vol. 237, pp. 795–800, 2013.
  • [27] Y. Yin, H. Yu and H. Zhang, “A feature extraction method based on wavelet packet analysis for discrimination of Chinese vinegars using a gas sensors array,” Sensors and Actuators B: Chemical, vol. 134, 1005–1009, 2008.
  • [28] S. R. Oliveira, A. P. Oliveira and J. A. Gomes Neto, “Tungsten permanent chemical modifier with co-injection of Pd(NO3)2 + Mg(NO3)2 for direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry,” Food Chemistry, vol. 105, pp. 236–241, 2007.
  • [29] Z. Xiao, S. Dai, Y. Niu, H. Yu, J. Zhu, H. Tian and Y. Gu, “Discrimination of Chinese Vinegars Based on Headspace Solid‐Phase Microextraction Gas Chromatography Mass Spectrometry of Volatile Compounds and Multivariate Analysis,” Journal of Food Science, vol. 76, pp. 1125–1135, 2011.
  • [30] E. García Romero, G. Sánchez Muñoz, P. J. Martín Alvarez and M. D. Cabezudo Ibáñez, “Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography,” Journal of Chromatography A, vol. 655, pp. 111–117, 1993.
  • [31] T. Owen, “Fundamentals of UV-visible Spectroscopy,” Hewlett-Packard Company, Germany, vol. 12, pp. 14–25, 1996.
  • [32] K. Ravikumar, S. Agilan, M. Raja, R. Marnadu, T. Alshahrani, Mohd Shkir, M. Balaji and R. Ganesh, “Investigation on microstructural and opto-electrical properties of Zr-doped SnO2 thin films for Al/Zr:SnO2/p-Si Schottky barrier diode application,” Physica B: Physics of Condensed Matter, vol. 599, pp. 412452, 2020.
  • [33] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Materials Research Bulletin, vol. 3, pp. 37–46, 1968.
  • [34] A. Krishnan, K. Rishad Ali, G. Vishnu and P. Kannan, “Towards phase pure CZTS thin films by SILAR method with augmented Zn adsorption for photovoltaic applications,” Materials for Renewable and Sustainable Energy, vol. 8, pp. 16–8, 2019.
  • [35] M. Öztürk, M. Okutan, R. Coşkun, B. Çolak and O. Yalçın, “Evaluation of the effect of dose change of Fe3O4 nanoparticles on electrochemical biosensor compatibility using hydrogels as an experimental living organism model,” Journal of Molecular Liquids, vol. 322, pp. 114574, 2021.
  • [36] R. Coşkun, M. Okutan, M. Öztürk and O. Yalçın, “Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems,” Journal of Molecular Liquids, vol. 296, pp. 112072, 2019.
  • [37] G. K. Batchelor, “An Introduction to Fluid Dynamics. Cambridge Mathematical Library series,” Cambridge University Press,1967.
  • [38] R. L. Panton, “Incompressible Flow,” (Fourth ed.). Hoboken: John Wiley & Sons., pp. 111-126, 2013.
  • [39] R. P. Chhabra and J. F. Richardson, “Non-Newtonian Flow and Applied Rheology,” Second Edition, Elsevier Ltd., pp. 1–109, 2008.
  • [40] A. Ibarz, C. Gonzalez, S. Esplugas, "Rheology of clarified fruit juices. III: Orange juices,” Journal of Food Engineering, vol. 21, pp. 485–494, 1994.
  • [41] K. M. Lynch, E. Zannini, S. Wilkinson, L. Daenen and E. K. Arendt, “Physiology of acetic acid bacteria and their role in vinegar and fermented beverages,” Compr. Rev. Food Sci. Food Saf., vol. 18, 587–625, 2019.
  • [42] S. Beis, M. Binder, K. Varmuza, A. Miltner and A. Fried, “UV-Vis Spectroscopy and Chemometrics for the Monitoring of Organosolv Pretreatments,” Chem. Engineering, vol. 45, pp. 2–14, 2018.
  • [43] G. Ruderman, E. R. Caffarena, I. G. Mogilner and E. J. Tolosa, “Hydrogen Bonding of Carboxylic Acids in Aqueous Solutions—UV Spectroscopy, Viscosity, and Molecular Simulation of Acetic Acid,” Journal of Solution Chemistry, vol. 27, pp. 935–948, 1998.
  • [44] L. Wang, J. Yang, Q. Lin, L. Xiang, Z. Song, Y. Zhang, L. Chen, “Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector”, Journal of Zhejiang University (Agriculture and Life Sciences), vol. 45, pp. 47–53, 2019.
  • [45] Z. Wang, F. Liu, Y. He, “Comparison and Determination of Acetic Acid of Plum Vinegar Using Visible/Near Infrared Spectroscopy and Multivariate Calibration”, Computer Science and Information Engineering, vol. 7, pp. 201–204, 2009.
  • [46] J. L. Aleixandre Tudo and W. du Toit, “The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking,” Frontiers and New Trends in the Science of Fermented Food and Beverages by R. L. Oviedo, Á. D. C. Pech Canul, Intech Open, pp. 1–22, 2019.
  • [47] M. J. Kamlet and R. W. Taft, “The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities,” Journal of the American Chemical Society, vol. 98 no. 2, pp. 377–383, 1976.
  • [48] C. E. Lund Myhre and C. J. Nielsen, “Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols,” Atmos. Chem. Phys., vol. 4 pp. 1759–1769, 2004. [49] K. Mitchell, A. L. Fahrenbruch and R. H. Bube, “Photovoltaic determination of optical absorption coefficient in CdTe,” J. Appl. Phys., vol. 48, pp. 829–830, 1977.
  • [50] A. Singh, A. Singh, S. Singh, P. Tandon, B. C. Yadav and R. R. Yadav, “Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications,” J. Alloy. Compd., vol. 618, pp. 475–48, 2015.
  • [51] P. Chand, S. Vaish and P. Kumar, “Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites,” Physica B, vol. 524, pp. 53–63, 2017.
  • [52] Ç. Bilkan, Y. Azizian Kalandaragh, Ş. Altındal and R. Shokrani Havigh, “Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures,” Physica B: Condensed Matter, vol. 500, pp. 154–160, 2016.
  • [53] P. M. Falcone and P. Giudici, “Molecular size and molecular size distribution affecting traditional balsamic vinegar aging,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 7057–7066, 2008.
  • [54] H. F. George and F. Qureshi, “Newton’s Law of Viscosity, Newtonian and Non-Newtonian Fluids”, In: Wang Q. J., Chung Y. W. (eds) Encyclopedia of Tribology. Springer, Boston, pp. 22-109, 2013.
  • [55] I.M. Krieger, T.J. Dougherty, “A mechanism for non-newtonian flow in suspensions of rigid spheres”, Transactions of the Society of Rheology, vol. 3, no. 1, pp. 137–152, 1959.
  • [56] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries Fundamentals and Engineering Applications, 1st Ed., Butterworth-Heinemann, USA, pp. 37–72, 1999.
  • [57] E. Vafa, R. Bazargan Lari and M. Ebrahim Bahrololoom, “Synthesis of 45S5 bioactive glass-ceramic using the-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar,” Journal of Materials Research and Technology, vol. 10, pp. 1427–1436, 2021.
  • [58] D. Dong, W. Zheng, L. Jiao, Y. Lang and X. Zhao, “Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics,” Food Chemistry, vol. 194, pp. 95–100, 2016.
  • [59] S. Bakir, D. Devecioglu, S. Kayacan, G. Toydemir, F. Karbancioglu Guler and E. Capanoglu, “Investigating the antioxidant and antimicrobial activities of different vinegars,” Eur. Food. Res. Technol., vol. 243, pp. 2083–2094, 2017.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhittin Öztürk 0000-0003-1627-392X

Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 4

Kaynak Göster

APA Öztürk, M. (2021). Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(4), 1493-1506. https://doi.org/10.29130/dubited.882634
AMA Öztürk M. Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods. DÜBİTED. Temmuz 2021;9(4):1493-1506. doi:10.29130/dubited.882634
Chicago Öztürk, Muhittin. “Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, sy. 4 (Temmuz 2021): 1493-1506. https://doi.org/10.29130/dubited.882634.
EndNote Öztürk M (01 Temmuz 2021) Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 4 1493–1506.
IEEE M. Öztürk, “Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods”, DÜBİTED, c. 9, sy. 4, ss. 1493–1506, 2021, doi: 10.29130/dubited.882634.
ISNAD Öztürk, Muhittin. “Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/4 (Temmuz 2021), 1493-1506. https://doi.org/10.29130/dubited.882634.
JAMA Öztürk M. Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods. DÜBİTED. 2021;9:1493–1506.
MLA Öztürk, Muhittin. “Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 9, sy. 4, 2021, ss. 1493-06, doi:10.29130/dubited.882634.
Vancouver Öztürk M. Determination of Quality in Homemade Vinegars by Spectroscopy and Rheology Methods. DÜBİTED. 2021;9(4):1493-506.