Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Welding Parameters of Arc Welding Electrodes by Artificial Intelligence Methods

Yıl 2021, Cilt: 9 Sayı: 6 - ICAIAME 2021, 316 - 328, 31.12.2021
https://doi.org/10.29130/dubited.1014926

Öz

In recent years, many studies have been carried out on Artificial Immune System (AIS) with Clonal Selection Algorithm (CSA), which is one of the sub-methods of artificial intelligence, which is a very popular field. In this study, a hybrid model is proposed in which the AIS algorithm and fuzzy logic method are used together in order to find the most suitable values for welding machine electrodes, which have a wide usage area in the industry. In the study, a software has been developed that optimizes the welding parameters and gives their combinations in order to speed up the R&D activities carried out in order to make the welding consumable a better-quality product and to reduce the costs. With this study carried out in the Visual Studio environment, the yield strength (N/mm²) of welding consumables was optimized by using different welding input parameters. In this study, AIS clonal selection algorithm (CSA) and fuzzy logic hybrid algorithm method are discussed in order to speed up resource production R&D activities and reduce costs.

Kaynakça

  • [1] G. Casalino, F. Facchini, M. Mortello & G. Mummolo, “ANN modelling to optimize manufacturing processes: the case of laser welding” IFAC-PapersOnLine, vol. 49, no. 12, pp. 378-383, 2016.
  • [2] S. Huff, “TIG Welding Skill Extraction using a Machine Learning Algorithm,” Texas State University, San Marcos, Texas, 2017.
  • [3] S. Wu, T. Polte and D. Rehfeldt, “A fuzzy logic system for process monitoring and quality evaluation in GMAW,” Welding Journal, vol. 80, no. 2, pp.33-38, 2001.
  • [4] S. Mahesh and V. Appalaraju, “Optimization of MIG Welding Parameters for Improving Strength of Welded Joints,” International Journal of Innovative Technology and Research, vol. 5, no. 3, pp. 6453-6458, 2017.
  • [5] K. R. Naik and A. K. Khandelwal, “Effects of the Bead Geometry of MIG Arc Welding Analysis by Fuzzy Logic Method,” International Journal of Science, Engineering and Technology, vol. 5, no. 6, pp.166-171, 2017.
  • [6] A. Al-Faruk, A. Hasib, N. Ahmed and U. K. Das, “Prediction of Weld Bead Geometry and Penetration in Electric Arc Welding using Artificial Neural Networks,” International Journal of Mechanical & Mechatronics Engineering, vol.10, no. 4, pp.19-24, 2010.
  • [7] B. Sunil, B. B. Naik, K. Sammaiah, K. Murti and N. Ananth, “Discretization and artificial neural network approach in resistance spot welding of aluminium alloy AA6063 T6 sheets used in automotive applications,” International Journal of Advanced Research and Development, vol. 2, no.6, pp.371-377, 2017.
  • [8] J. Timmis, T. Knight, L. N. Castro and E. Hart, “An Overview of Artificial Immune Systems”, in, Computation in Cells and Tissues, R. Paton, H. Bolouri, M. Holcombe, J. Parish, & R. Tateson Natural Computing Series, Berlin, Heidelberg: Springer, pp. 51-91, 2004.
  • [9] S. Forrest, A. P. “Self-nonself discrimination in a computer,” IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, 1994.
  • [10] J. Brown, M. Anwar and G. Dozier, “Detection of Mobile Malware: An Artificial Immunity Approach,” IEEE Security and Privacy Workshops, San Jose, CA, 2016, pp. 74-80.
  • [11] B. Alatas, I. Aydin and E. Akin, “Asenkron Motorların Hata Teşhisinde Yapay Bağışıklık Sistemi Yaklaşımı,” 2. Mühendislik Bilimleri Genç Araştırmacılar Kongresi, İstanbul, Türkiye, 2005, ss. 76-85.
  • [12] R. Singh and T. Prasad, “Exploration of Hybrid Neuro Fuzzy Systems,” National Conference on Advances in Knowledge Management, Faridabad, Haryana, India, 2010, pp.1-7.
  • [13] I. Hatzilygeroudis and J. Prentzas, “Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems,” Expert Systems with Applications, vol. 27, no. 1, pp.63-75, 2004.
  • [14] O. Engin and A. Döyen, “Artificial Immune Systems and Applications in Industrial Problems,” Gazi University Journal of Science, vol. 17, no.1, pp.71-84, 2004.
  • [15] O. Nasaroui, F. Gonzalez, and D. Dasgupta, “The fuzzy artificial immune system: motivations, basic concepts, and application to clustering and Web profiling,” IEEE World Congress on Computational Intelligence, Honolulu, HI, USA, 2002.

Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi

Yıl 2021, Cilt: 9 Sayı: 6 - ICAIAME 2021, 316 - 328, 31.12.2021
https://doi.org/10.29130/dubited.1014926

Öz

Son yıllarda oldukça popüler bir alan olan yapay zekânın alt yöntemlerinden Yapay Bağışıklık Sistemi (YBS) ile Klonal Seçim Algoritması (KSA) üzerine bir çok çalışma yapılmaktadır. Bu çalışmada, endüstride geniş bir kullanım alanına sahip kaynak makinası elektrotlarının en uygun değerlerinin bulunabilmesi için Yapay Bağışıklık Sistemi (YBS) algoritması ile, Bulanık Mantık yönteminin bir arada kullanıldığı hibrit bir model önerilmektedir. Gerçekleştirilen çalışmada kaynak sarf malzemesinin daha kaliteli bir ürün olması için gerçekleştirilen Ar-Ge faaliyetlerini hızlandırmak ve maliyetlerini düşürmek amacıyla kaynak parametrelerini optimize ederek kombinasyonlarını veren bir yazılım geliştirilmiştir. Visual Studio ortamında gerçekleştirilen bu çalışma ile farklı kaynak girdi parametreleri kullanılarak kaynak sarf malzemelerinin akma mukavemeti (N/mm²) optimize edilmiştir. Bu çalışmada kaynak üretim Ar-Ge faaliyetlerini hızlandırmak ve maliyetlerini düşürmek amacıyla YBS Klonal Seçim Algoritması (KSA) ile Bulanık Mantık hibrit algoritma yöntemi ele alınmıştır.


Kaynakça

  • [1] G. Casalino, F. Facchini, M. Mortello & G. Mummolo, “ANN modelling to optimize manufacturing processes: the case of laser welding” IFAC-PapersOnLine, vol. 49, no. 12, pp. 378-383, 2016.
  • [2] S. Huff, “TIG Welding Skill Extraction using a Machine Learning Algorithm,” Texas State University, San Marcos, Texas, 2017.
  • [3] S. Wu, T. Polte and D. Rehfeldt, “A fuzzy logic system for process monitoring and quality evaluation in GMAW,” Welding Journal, vol. 80, no. 2, pp.33-38, 2001.
  • [4] S. Mahesh and V. Appalaraju, “Optimization of MIG Welding Parameters for Improving Strength of Welded Joints,” International Journal of Innovative Technology and Research, vol. 5, no. 3, pp. 6453-6458, 2017.
  • [5] K. R. Naik and A. K. Khandelwal, “Effects of the Bead Geometry of MIG Arc Welding Analysis by Fuzzy Logic Method,” International Journal of Science, Engineering and Technology, vol. 5, no. 6, pp.166-171, 2017.
  • [6] A. Al-Faruk, A. Hasib, N. Ahmed and U. K. Das, “Prediction of Weld Bead Geometry and Penetration in Electric Arc Welding using Artificial Neural Networks,” International Journal of Mechanical & Mechatronics Engineering, vol.10, no. 4, pp.19-24, 2010.
  • [7] B. Sunil, B. B. Naik, K. Sammaiah, K. Murti and N. Ananth, “Discretization and artificial neural network approach in resistance spot welding of aluminium alloy AA6063 T6 sheets used in automotive applications,” International Journal of Advanced Research and Development, vol. 2, no.6, pp.371-377, 2017.
  • [8] J. Timmis, T. Knight, L. N. Castro and E. Hart, “An Overview of Artificial Immune Systems”, in, Computation in Cells and Tissues, R. Paton, H. Bolouri, M. Holcombe, J. Parish, & R. Tateson Natural Computing Series, Berlin, Heidelberg: Springer, pp. 51-91, 2004.
  • [9] S. Forrest, A. P. “Self-nonself discrimination in a computer,” IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, 1994.
  • [10] J. Brown, M. Anwar and G. Dozier, “Detection of Mobile Malware: An Artificial Immunity Approach,” IEEE Security and Privacy Workshops, San Jose, CA, 2016, pp. 74-80.
  • [11] B. Alatas, I. Aydin and E. Akin, “Asenkron Motorların Hata Teşhisinde Yapay Bağışıklık Sistemi Yaklaşımı,” 2. Mühendislik Bilimleri Genç Araştırmacılar Kongresi, İstanbul, Türkiye, 2005, ss. 76-85.
  • [12] R. Singh and T. Prasad, “Exploration of Hybrid Neuro Fuzzy Systems,” National Conference on Advances in Knowledge Management, Faridabad, Haryana, India, 2010, pp.1-7.
  • [13] I. Hatzilygeroudis and J. Prentzas, “Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems,” Expert Systems with Applications, vol. 27, no. 1, pp.63-75, 2004.
  • [14] O. Engin and A. Döyen, “Artificial Immune Systems and Applications in Industrial Problems,” Gazi University Journal of Science, vol. 17, no.1, pp.71-84, 2004.
  • [15] O. Nasaroui, F. Gonzalez, and D. Dasgupta, “The fuzzy artificial immune system: motivations, basic concepts, and application to clustering and Web profiling,” IEEE World Congress on Computational Intelligence, Honolulu, HI, USA, 2002.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Handan Toprak Şenol 0000-0001-9579-4728

Osman Özkaraca 0000-0002-0964-8757

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 6 - ICAIAME 2021

Kaynak Göster

APA Toprak Şenol, H., & Özkaraca, O. (2021). Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi. Duzce University Journal of Science and Technology, 9(6), 316-328. https://doi.org/10.29130/dubited.1014926
AMA Toprak Şenol H, Özkaraca O. Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi. DÜBİTED. Aralık 2021;9(6):316-328. doi:10.29130/dubited.1014926
Chicago Toprak Şenol, Handan, ve Osman Özkaraca. “Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri Ile İncelenmesi”. Duzce University Journal of Science and Technology 9, sy. 6 (Aralık 2021): 316-28. https://doi.org/10.29130/dubited.1014926.
EndNote Toprak Şenol H, Özkaraca O (01 Aralık 2021) Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi. Duzce University Journal of Science and Technology 9 6 316–328.
IEEE H. Toprak Şenol ve O. Özkaraca, “Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi”, DÜBİTED, c. 9, sy. 6, ss. 316–328, 2021, doi: 10.29130/dubited.1014926.
ISNAD Toprak Şenol, Handan - Özkaraca, Osman. “Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri Ile İncelenmesi”. Duzce University Journal of Science and Technology 9/6 (Aralık 2021), 316-328. https://doi.org/10.29130/dubited.1014926.
JAMA Toprak Şenol H, Özkaraca O. Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi. DÜBİTED. 2021;9:316–328.
MLA Toprak Şenol, Handan ve Osman Özkaraca. “Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri Ile İncelenmesi”. Duzce University Journal of Science and Technology, c. 9, sy. 6, 2021, ss. 316-28, doi:10.29130/dubited.1014926.
Vancouver Toprak Şenol H, Özkaraca O. Ark Kaynağı Elektrotlarındaki Kaynak Parametrelerinin Yapay Zekâ Yöntemleri ile İncelenmesi. DÜBİTED. 2021;9(6):316-28.