Araştırma Makalesi
BibTex RIS Kaynak Göster

Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu

Yıl 2022, Cilt: 10 Sayı: 1, 216 - 232, 31.01.2022
https://doi.org/10.29130/dubited.863992

Öz

Yüksek miktarda kimyasal madde içeren tekstil endüstrisi atıksuları önemli çevresel kirletici kaynaklarındandır. Çalışmada, tekstil endüstrisinde ürünlerin boyanmasında kullanılan katyonik boyar maddelerden olan Maxilon Blue GRL’nin ucuz ve ülkemizde bol bulunan illit kil minerali ile giderimi araştırılmıştır. FTIR, XRF ve SEM analizleri ile kil mineralinin karakterizasyonu yapılmıştır. Optimizasyon yöntemi olarak Yanıt Yüzey Yöntemi’nin (YYY) Merkezi Kompozit Tasarımı (MKT) kullanılmıştır. Optimizasyon yönteminde başlangıç boyar madde konsantrasyonu (100-500 mg/L), katı sıvı oranı (0,2-0,6 g/L), pH (4-8) ve sıcaklık (15-55 °C) bağımsız değişkenler olarak, yüzde giderim verimi ve adsorbent kapasitesi (q) ise bağımlı değişkenler olarak seçilmiştir. MKT’den belirlenen tasarım şartlarında kesikli sistemde deneyler gerçekleştirilmiş ve elde edilen deneysel sonuçlar YYY’de değerlendirilerek yüzde giderim verimi ve adsorbent kapasitesinin hesaplanabileceği model denklemler türetilmiştir. Yüzde giderim verimi ve adsorbent kapasitesi için elde edilen deneysel sonuçlar ile model sonuçları karşılaştırılmış ve % 95 güvenilirlik seviyesi için R2 değerleri sırası ile 0,9845 ve 0,9509 olmuştur. Ayrıca ANOVA analizi yapılarak prosesi etkileyen parametreler ve parametrelerin ikili etkileşimleri ortaya konulmuştur. Yüzde giderim verimi ve adsorbent kapasitesini maksimum yapan şartlar ayrı ayrı belirlenmiş ve bu şartlarda doğrulama deneyleri yapılmıştır. Yüzde giderim verimi için elde edilen optimum şartlar; başlangıç konsantrasyonu 100 mg/L, pH 4, katı sıvı oranı 0,6 g/L ve sıcaklık 15 °C olarak belirlenmiş ve bu şartlarda %100 boya giderimi sağlanmıştır. Adsorbent kapasitesi için elde edilen optimum şartlar ise; başlangıç boya konsantrasyonu 250 mg/L, pH 8, katı sıvı oranı 0,2 g/L ve sıcaklık 55 °C olarak belirlenmiştir, bu şartlarda 631,5 mg/g adsorbent kapasitesi elde edilmiştir.

Kaynakça

  • [1] M. T. Yagub, T. K. Sen, S. Afroze , H.M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,” Advances in Colloid and Interface Science, vol. 109, pp. 172-184, 2014.
  • [2] E. Özmetin, M. M. Kocakerim , “Removal of Methylene Blue dye from aqueous solutions by illite clay,” Desalination and Water Treatment, vol. 124, pp. 279-286, 2018.
  • [3] H. M. Awwad, A. F. Alkaim, M. N. Al-Baiati, “ Adsorption of Maxilon Blue (GRL) from Aqueous Solutions by using a novel nano-composite polymer,” IOP Conference Series: Materials Science and Engineering, vol. 571, no. 1, pp. 012095, 2019.
  • [4] A. M. K. Aljeborı, A. N. Alshırıfı, “Effect of Different Parameters on the Adsorption of Textile Dye Maxilon Blue GRL from Aqueous Solution by Using White Marble,” Asian Journal of Chemistry, vol. 24, no. 12, pp. 5813-5816, 2012.
  • [5] M. B. Alqaragully, “Removal of Textile Dyes (Maxilon Blue, and Methyl Orange) by Date Stones Activated Carbon,” International Journal of Advanced Research in Chemical Science, vol. 1, no. 1, pp. 48-59, 2014.
  • [6] H. Emgili, E. Yabalak, Ö. Görmez, A. M. Gizir, “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods,” Gazi University Journal of Science, vol. 30, no. 4, pp. 140-150, 2017.
  • [7] Y. Çalıskan, S. Harbeck, N. Bektas, “Adsorptive Removal of Basic Yellow Dye Using Bigadiç Zeolites: FTIR Analysis, Kinetics, and Isotherms Modeling,” Environmental Progress and Sustainable Energy, vol. 38, no. 1, pp. 185-195, 2019.
  • [8] A. M. Aljeboree, A. N. Alshirifi, A. F. Alkaim, “Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon,” King Saud University Arabian Journal of Chemistry, vol. 10, pp. 3381-3393, 2017.
  • [9] F. Kooli, Y. Liu, R. Al-Faze, A. Al-Suhaimi, “Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution,” Applied Clay Science, vol. 116-117, pp. 23-30, 2015.
  • [10] M. Korkmaz, C. Özmetin, B. A. Fil, E. Özmetin, Y. Yaşar, “Methyl violet dye adsorption onto clinoptilolite (Natural Zeolite): Isotherm and kinetic study,” Fresenius Environmental Bulletin, vol. 22, no. A5, pp. 1526-1536, 2013.
  • [11] M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review,” Desalination, vol. 280, pp. 1-13, 2011.
  • [12] D. Ozdesa, C. Duran, H. B. Senturk, H. Avan, B. Bicer “Kinetics, thermodynamics, and equilibrium evaluation of adsorptive removal of methylene blue onto natural illitic clay mineral,” Desalination and Water Treatment, vol. 52, pp. 1-3, 2014.
  • [13] C. E. Onu, J. T. Nwabanne, P. E. Ohale, C. O. Asadu, “Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay,” South African Journal of Chemical Engineering, vol. 36, pp. 24-42, 2021.
  • [14] K. Elass, A. Laachach, A. Alaoui, M. Azzi, “Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco,” Applied Clay Science, vol. 54, pp. 90-96, 2011. . [15] E. Errais, J. Duplay, F. Darragi, “Textile dye removal by natural clay – case study of Fouchana Tunisian clay,” Environmental Technology, vol. 31, no. 4, pp. 373–380, 2010.
  • [16] N. Abidi, J. Duplay, A. Jada, R. Baltenweck, E. Errais, K. Semhi, M. Trabelsi-Ayadi, “Toward the understanding of the treatment of textile industries’ effluents by clay: adsorption of anionic dye on kaolinite,” Arabian Journal of Geosciences, vol. 10, no.16, pp. 1-14, 2017.
  • [17] I. Sentürk, M. Alzein, “Adsorptive removal of basic blue 41 using pistachio shell adsorbent - Performance in batch and column system,” Sustainable Chemistry and Pharmacy, vol. 16, 100254, 2020.
  • [18] P. Chang, Z. Li, J. Jean, W. Jiang, C. Wang, K. Lin, “Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite,” Applied Clay Science, vol. 67-68, pp.158-163, 2012.
  • [19] B. A. Fil, M. Korkmaz, C. Özmetin, “Application of Nonlinear Regression Analysis for Methyl Violet (MV) Dye Adsorption from Solutions onto Illite Clay,” Journal of Dispersion Science and Technology, vol. 37, no. 7, pp. 991-1001, 2016.
  • [20] O. S. Omer, B. H. M. Hussein, A. M. Ouf, M. A. Hussein, A. Mgaidi, “An organified mixture of illite-kaolinite for the removal of Congo red from wastewater,” Journal of Taibah University for Science, vol. 12, no. 6, pp. 858-866, 2018.
  • [21] O. Amrhar, H. Nassali, M. S. Elyoubi, “Adsorption of a cationic dye, Methylene Blue, onto Moroccan Illitic Clay,” Journal of Materials and Environmental Science, vol. 6, no. 11, pp. 3054-3065, 2015.
  • [22] K. S. Shabani, B. A. Orang, “Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays,” Journal of Mining and Environment, vol. 11, no. 4, pp. 1079-1093, 2020.
  • [23] K. M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele, R. S. Singhal, “Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan,” Biochemical Engineering Journal, vol. 41, pp. 266-273, 2008.
  • [24] W. C. Lee, S. Yusof, N. S. A. Hamid, B. S. Baharin, “Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM),” Journal of Food Engineering, vol. 73, pp. 55-63, 2006.
  • [25] S. Karimifard, M. R. A. Moghaddam, “Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review,” Science of the Total Environment, vol. 640-641, pp. 772-797, 2018.
  • [26] C. A. Igwegbea, L. Mohmmadib, S. Ahmadic, A. Rahdard, D. Khadkhodaiyb, R. Dehghanie, S. Rahdarc, “Modeling of adsorption of Methylene Blue dye on Ho-CaWO4 nanoparticles using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques,” MethodsX, vol. 6, pp. 1779-1797, 2019.
  • [27] R. Bagheri, M Ghaedi, A. Asfaram, E. A. Dil, H. Javadian, “RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: Kinetic and isotherm studies,” Polyhedron, vol. 171, pp. 464-472, 2019.
  • [28] M. R. Gadekar, M. M. Ahammed, ‘Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach,’ Journal of Environmental Management, vol. 231, pp. 241–248, 2019.
  • [29] Y. Hannachi, A. Hafidh, “Preparation and characterization of novelbi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batchand fixed-bed modes: RSM optimization, kineticand equilibrium studies,” Journal of Saudi Chemical Society, vol. 24, no. 7, pp. 505-519, 2020.
  • [30] M. Dogan, M Alkan, O Demirbas, Y. Ozdemir, C. Ozmetin, “Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions,” Chemical Engineering Journal, vol. 124, pp. 89–101, 2006.
  • [31] I. Humelnicua, A. Baiceanu, M. E. Ignat, V. Dulmana “The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics,” Process Safety and Environmental Protection, vol. 105, pp. 274-287, 2017.

Optimization of Maxilon Blue GRL Dye Removal By Illite Clay MineraI

Yıl 2022, Cilt: 10 Sayı: 1, 216 - 232, 31.01.2022
https://doi.org/10.29130/dubited.863992

Öz

Textile industry wastewater which contains high chemical materials is one of the important sources of the environmental pollutants. In this study, the removal of Maxilon Blue GRL cationic dye, which is used for dyeing of products in the textile industry, with the cheap and abundant illite clay mineral in our country has been investigated. The clay mineral was characterized by FTIR, XRF and SEM analyzes. The Central Composite Design (CCD) of the Response Surface Methodology (RSM) was used as optimization method. In the optimization method, the initial dye concentration (100-500 mg/L), solid to liquid ratio (0,2-0,6 g/L), pH (4-8) and temperature (15-55 °C) were chosen as independent variables, and the removal efficiency (%) and adsorbent capacity (q) were selected as dependent variables. Experiments were carried out in a batch system under the design conditions determined from CCD. The experimental results are evaluated by RSM and model equations in which removal efficiency and adsorbent capacity can be calculated were derived from RSM. The comparison of the results obtained from experimental and model equations for removal efficiency (%) and adsorbent capacity (q) was performed and R2 values for the confidence level of 95% were 0.9845 and 0.9509, respectively. In addition, the parameters affecting the process and the dual interactions of the parameters were revealed by ANOVA analysis. The conditions that maximize the removal efficiency (%) and adsorbent capacity (q) were determined for each individually and confirmation experiments carried out under these conditions. The optimum conditions for removal efficiency (%) were determined as initial concentration (100 mg/L), pH (4), solid to liquid ratio (0,6 g/L) and temperature (15 °C) and dye removal efficiency of 100% was obtained in these conditions. Otherhand, the optimum conditions for adsorbent capacity were determined as initial dye concentration (250 mg/L), pH (8), solid to liquid ratio (0.2 g/L) and temperature (55 °C) and the adsorbent capacity was obtained as 631.5 mg/g in these conditions. 

Kaynakça

  • [1] M. T. Yagub, T. K. Sen, S. Afroze , H.M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,” Advances in Colloid and Interface Science, vol. 109, pp. 172-184, 2014.
  • [2] E. Özmetin, M. M. Kocakerim , “Removal of Methylene Blue dye from aqueous solutions by illite clay,” Desalination and Water Treatment, vol. 124, pp. 279-286, 2018.
  • [3] H. M. Awwad, A. F. Alkaim, M. N. Al-Baiati, “ Adsorption of Maxilon Blue (GRL) from Aqueous Solutions by using a novel nano-composite polymer,” IOP Conference Series: Materials Science and Engineering, vol. 571, no. 1, pp. 012095, 2019.
  • [4] A. M. K. Aljeborı, A. N. Alshırıfı, “Effect of Different Parameters on the Adsorption of Textile Dye Maxilon Blue GRL from Aqueous Solution by Using White Marble,” Asian Journal of Chemistry, vol. 24, no. 12, pp. 5813-5816, 2012.
  • [5] M. B. Alqaragully, “Removal of Textile Dyes (Maxilon Blue, and Methyl Orange) by Date Stones Activated Carbon,” International Journal of Advanced Research in Chemical Science, vol. 1, no. 1, pp. 48-59, 2014.
  • [6] H. Emgili, E. Yabalak, Ö. Görmez, A. M. Gizir, “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods,” Gazi University Journal of Science, vol. 30, no. 4, pp. 140-150, 2017.
  • [7] Y. Çalıskan, S. Harbeck, N. Bektas, “Adsorptive Removal of Basic Yellow Dye Using Bigadiç Zeolites: FTIR Analysis, Kinetics, and Isotherms Modeling,” Environmental Progress and Sustainable Energy, vol. 38, no. 1, pp. 185-195, 2019.
  • [8] A. M. Aljeboree, A. N. Alshirifi, A. F. Alkaim, “Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon,” King Saud University Arabian Journal of Chemistry, vol. 10, pp. 3381-3393, 2017.
  • [9] F. Kooli, Y. Liu, R. Al-Faze, A. Al-Suhaimi, “Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution,” Applied Clay Science, vol. 116-117, pp. 23-30, 2015.
  • [10] M. Korkmaz, C. Özmetin, B. A. Fil, E. Özmetin, Y. Yaşar, “Methyl violet dye adsorption onto clinoptilolite (Natural Zeolite): Isotherm and kinetic study,” Fresenius Environmental Bulletin, vol. 22, no. A5, pp. 1526-1536, 2013.
  • [11] M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review,” Desalination, vol. 280, pp. 1-13, 2011.
  • [12] D. Ozdesa, C. Duran, H. B. Senturk, H. Avan, B. Bicer “Kinetics, thermodynamics, and equilibrium evaluation of adsorptive removal of methylene blue onto natural illitic clay mineral,” Desalination and Water Treatment, vol. 52, pp. 1-3, 2014.
  • [13] C. E. Onu, J. T. Nwabanne, P. E. Ohale, C. O. Asadu, “Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay,” South African Journal of Chemical Engineering, vol. 36, pp. 24-42, 2021.
  • [14] K. Elass, A. Laachach, A. Alaoui, M. Azzi, “Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco,” Applied Clay Science, vol. 54, pp. 90-96, 2011. . [15] E. Errais, J. Duplay, F. Darragi, “Textile dye removal by natural clay – case study of Fouchana Tunisian clay,” Environmental Technology, vol. 31, no. 4, pp. 373–380, 2010.
  • [16] N. Abidi, J. Duplay, A. Jada, R. Baltenweck, E. Errais, K. Semhi, M. Trabelsi-Ayadi, “Toward the understanding of the treatment of textile industries’ effluents by clay: adsorption of anionic dye on kaolinite,” Arabian Journal of Geosciences, vol. 10, no.16, pp. 1-14, 2017.
  • [17] I. Sentürk, M. Alzein, “Adsorptive removal of basic blue 41 using pistachio shell adsorbent - Performance in batch and column system,” Sustainable Chemistry and Pharmacy, vol. 16, 100254, 2020.
  • [18] P. Chang, Z. Li, J. Jean, W. Jiang, C. Wang, K. Lin, “Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite,” Applied Clay Science, vol. 67-68, pp.158-163, 2012.
  • [19] B. A. Fil, M. Korkmaz, C. Özmetin, “Application of Nonlinear Regression Analysis for Methyl Violet (MV) Dye Adsorption from Solutions onto Illite Clay,” Journal of Dispersion Science and Technology, vol. 37, no. 7, pp. 991-1001, 2016.
  • [20] O. S. Omer, B. H. M. Hussein, A. M. Ouf, M. A. Hussein, A. Mgaidi, “An organified mixture of illite-kaolinite for the removal of Congo red from wastewater,” Journal of Taibah University for Science, vol. 12, no. 6, pp. 858-866, 2018.
  • [21] O. Amrhar, H. Nassali, M. S. Elyoubi, “Adsorption of a cationic dye, Methylene Blue, onto Moroccan Illitic Clay,” Journal of Materials and Environmental Science, vol. 6, no. 11, pp. 3054-3065, 2015.
  • [22] K. S. Shabani, B. A. Orang, “Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays,” Journal of Mining and Environment, vol. 11, no. 4, pp. 1079-1093, 2020.
  • [23] K. M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele, R. S. Singhal, “Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan,” Biochemical Engineering Journal, vol. 41, pp. 266-273, 2008.
  • [24] W. C. Lee, S. Yusof, N. S. A. Hamid, B. S. Baharin, “Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM),” Journal of Food Engineering, vol. 73, pp. 55-63, 2006.
  • [25] S. Karimifard, M. R. A. Moghaddam, “Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review,” Science of the Total Environment, vol. 640-641, pp. 772-797, 2018.
  • [26] C. A. Igwegbea, L. Mohmmadib, S. Ahmadic, A. Rahdard, D. Khadkhodaiyb, R. Dehghanie, S. Rahdarc, “Modeling of adsorption of Methylene Blue dye on Ho-CaWO4 nanoparticles using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques,” MethodsX, vol. 6, pp. 1779-1797, 2019.
  • [27] R. Bagheri, M Ghaedi, A. Asfaram, E. A. Dil, H. Javadian, “RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: Kinetic and isotherm studies,” Polyhedron, vol. 171, pp. 464-472, 2019.
  • [28] M. R. Gadekar, M. M. Ahammed, ‘Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach,’ Journal of Environmental Management, vol. 231, pp. 241–248, 2019.
  • [29] Y. Hannachi, A. Hafidh, “Preparation and characterization of novelbi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batchand fixed-bed modes: RSM optimization, kineticand equilibrium studies,” Journal of Saudi Chemical Society, vol. 24, no. 7, pp. 505-519, 2020.
  • [30] M. Dogan, M Alkan, O Demirbas, Y. Ozdemir, C. Ozmetin, “Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions,” Chemical Engineering Journal, vol. 124, pp. 89–101, 2006.
  • [31] I. Humelnicua, A. Baiceanu, M. E. Ignat, V. Dulmana “The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics,” Process Safety and Environmental Protection, vol. 105, pp. 274-287, 2017.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nilgün Volkan 0000-0002-5109-2916

Elif Ozmetin 0000-0002-3318-4083

Yayımlanma Tarihi 31 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Volkan, N., & Ozmetin, E. (2022). Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. Duzce University Journal of Science and Technology, 10(1), 216-232. https://doi.org/10.29130/dubited.863992
AMA Volkan N, Ozmetin E. Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. DÜBİTED. Ocak 2022;10(1):216-232. doi:10.29130/dubited.863992
Chicago Volkan, Nilgün, ve Elif Ozmetin. “Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu”. Duzce University Journal of Science and Technology 10, sy. 1 (Ocak 2022): 216-32. https://doi.org/10.29130/dubited.863992.
EndNote Volkan N, Ozmetin E (01 Ocak 2022) Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. Duzce University Journal of Science and Technology 10 1 216–232.
IEEE N. Volkan ve E. Ozmetin, “Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu”, DÜBİTED, c. 10, sy. 1, ss. 216–232, 2022, doi: 10.29130/dubited.863992.
ISNAD Volkan, Nilgün - Ozmetin, Elif. “Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu”. Duzce University Journal of Science and Technology 10/1 (Ocak 2022), 216-232. https://doi.org/10.29130/dubited.863992.
JAMA Volkan N, Ozmetin E. Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. DÜBİTED. 2022;10:216–232.
MLA Volkan, Nilgün ve Elif Ozmetin. “Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu”. Duzce University Journal of Science and Technology, c. 10, sy. 1, 2022, ss. 216-32, doi:10.29130/dubited.863992.
Vancouver Volkan N, Ozmetin E. Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. DÜBİTED. 2022;10(1):216-32.