Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound Assisted Synthesis of 2,3-di(thiophene-3-yl)piperazine Monomers, Preparation of Their Conducting Polymers and Investigation of Their Supercapacitor Behaviors

Yıl 2022, Cilt: 10 Sayı: 1, 398 - 415, 31.01.2022
https://doi.org/10.29130/dubited.944357

Öz

In this study, the electrochemical charge storage properties of poly(2,3-di(thiophene-3-yl)piperazine)-based conducting polymer derivatives were investigated for supercapacitor applications. For this purpose, novel 2,3-di(thiophene-3-yl)piperazine electroactive monomers were sonochemically synthesized and they were electrochemically polymerized on stainless steel substrates to prepare poly(2,3-di(thiophene-3-yl)piperazine (PTTP) and poly(2,3-di(thiophene-3-yl)decahydroquinoxaline (PTTQ)-based redox-active electrode materials. The capacitive performances of PTTP and PTTQ were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. PTTP and PTTQ redox-active electrode materials achieved the specific capacitances of 175 Fg-1 and 198 Fg-1 at a constant current density of 2.5 mAcm-2. PTTP and PTTQ electrodes also delivered the energy densities of 70,2 Whkg-1 and 87,1 Whkg-1 and the power densities of 7 kWkg-1 and 6,2 kWkg-1. Besides, PTTP and PTTQ exhibited high long-term cycling stabilities (80% and 87,5% capacitance retentions). The results of capacitive performance tests reveal that PTTP and PTTQ electrode materials are promising redox-active materials for high-performance practical supercapacitor applications. 

Proje Numarası

KBAG-114Z167

Kaynakça

  • [1] D. Yiğit, Ş.O. Hacıoğlu, M. Güllü, L. Toppare, “Novel poly(2,5-dithienylpyrrole) (PSNS) derivatives functionalized with azobenzene, coumarin and fluorescein chromophore units: spectroelectrochemical properties and electrochromic device applications,” New Journal of Chemistry, vol. 39, no. 5, pp 3371-3379, 2015.
  • [2] A. Chaudhary, D.K. Pathak, M. Tanwar, P. Yogi, P.R. Sagdeo, R. Kumar, “Polythiophene–PCBM-based all-organic electrochromic device: fast and flexible,” ACS Applied Electronic Materials, vol. 1, no.1, pp. 58-63, 2019.
  • [3] M. Caliskan, M.C. Erer, S.T. Aslan, Y.A. Udum, L. Toppare, A. Cirpan, “Narrow band gap benzodithiophene and quinoxaline bearing conjugated polymers for organic photovoltaic applications,” Dyes and Pigments, vol. 180, pp. 108479, 2020.
  • [4] T.M. Clarke, A.M. Ballantyne, J. Nelson, D.D. Bradley, J.R. Durrant, (2008), “Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends,” Advanced Functional Materials, vol. 18, no. 24, pp. 4029-4035, 2008.
  • [5] C. Kok, C. Doyranli, B. Canımkurbey, S.P. Mucur, S. Koyuncu, “Effect of thiophene linker addition to fluorene-benzotriazole polymers with the purpose of achieving white emission in OLEDs,” RSC Advances, vol. 10, no. 32, pp. 18639-18647, 2020.
  • [6] J. Ohshita, Y. Tada, A. Kunai, Y. Harima, Y. Kunugi, “Hole-injection properties of annealed polythiophene films to replace PEDOT–PSS in multilayered OLED systems,” Synthetic Metals, vol. 159, no. 3-4, pp. 214-217, 2009.
  • [7] B. Li, D.N. Lambeth, “Chemical sensing using nanostructured polythiophene transistors,” Nano Letters, vol. 8, no. 11, pp. 3563-3567, 2008.
  • [8] T. Minamiki, Y. Hashima, Y. Sasaki, T. Minami, “An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water,” Chemical Communications, vol. 54, no. 50, pp. 6907-6910, 2018.
  • [9] C. Li, G. Shi, “Polythiophene-based optical sensors for small molecules,” ACS Applied Materials & Interfaces, vol. 5, no. 11, pp. 4503-4510, 2013.
  • [10] L. Torsi, A. Tafuri, N. Cioffi, M.C. Gallazzi, A. Sassella, L. Sabbatini, P.G. Zambonin, “Regioregular polythiophene field-effect transistors employed as chemical sensors,” Sensors and Actuators B: Chemical, vol. 93, no. 1-3, pp. 257-262, 2003.
  • [11] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, “A review of supercapacitor modeling, estimation, and applications: A control/management perspective,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1868-1878, 2018.
  • [12] J.G. Ibanez, M.E. Rincón, S. Gutierrez-Granados, M.H. Chahma, O.A. Jaramillo-Quintero, B.A. Frontana-Uribe, “Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors,” Chemical Reviews, vol. 118, no. 9, pp. 4731-4816, 2018.
  • [13] K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, Y.H. Lee, “Supercapacitors using single‐walled carbon nanotube electrodes,” Advanced Materials, vol. 13, no. 7, pp. 497-500, 2001.
  • [14] J.R. McDonough, J.W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, “Carbon nanofiber supercapacitors with large areal capacitances,” Applied Physics Letters, vol. 95, no. 24, pp. 243109, 2009.
  • [15] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, “Supercapacitor devices based on graphene materials,” The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13103-13107, 2009.
  • [16] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Letters, vol. 12, no. 3, pp. 1690-1696, 2012.
  • [17] S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, “Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application,” Applied Surface Science, vol. 257, no. 22, pp. 9498-9502, 2011.
  • [18] J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.D. Kim, “Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors,” Electrochimica Acta, vol. 56, no. 13, pp. 4849-4857, 2011.
  • [19] K.M. Lin, K.H. Chang, C.C. Hu, Y.Y. Li, “Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density,” Electrochimica Acta, vol. 54, no. 19, pp. 4574-4581, 2009.
  • [20] B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, “Interconnected V2O5 nanoporous network for high-performance supercapacitors,” ACS Applied Materials & Interfaces, vol. 4, no.9, pp. 4484-4490, 2012.
  • [21] J.G. Wang, F. Kang, B. Wei, “Engineering of MnO2-based nanocomposites for high-performance supercapacitors,” Progress in Materials Science, vol. 74, pp. 51-124, 2015.
  • [22] T.O. Magu, A.U. Agobi, L. Hitler, P.M. Dass, “A review on conducting polymers-based composites for energy storage application,” Journal of Chemical Reviews, vol. 1, no. 1, pp. 19-34, 2019.
  • [23] A. Eftekhari, L. Li, Y. Yang, “Polyaniline supercapacitors,” Journal of Power Sources, vol. 347, pp. 86-107, 2017.
  • [24] X. Wang, M. Xu, Y. Fu, S. Wang, T. Yang, K. Jiao, “A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application,” Electrochimica Acta, vol. 222, pp. 701-708, 2016.
  • [25] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q, Xue, C. Zhi, “Nanostructured polypyrrole as a flexible electrode material of supercapacitor,” Nano Energy, vol. 22, pp. 422-438, 2016.
  • [26] R.K. Sharma, A.C. Rastogi, S.B. Desu, “Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor,” Electrochemistry Communications, vol. 10, no. 2, pp. 268-272, 2008.
  • [27] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, “Polythiophene-based supercapacitors,” Journal of Power Sources, vol. 80, no. 1-2, pp. 142-148, 1999.
  • [28] R.B. Ambade, S.B. Ambade, R.R. Salunkhe, V. Malgras, S.H. Jin, Y. Yamauchi, S.H. Lee, “Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density,” Journal of Materials Chemistry A, vol. 4, no. 19, pp. 7406-7415, 2016.
  • [29] D. Yiğit, M. Güllü, “Capacitive properties of novel N-alkyl substituted poly (3, 6-dithienyl-9H-carbazole) s as redox electrode materials and their symmetric micro-supercapacitor applications,” Electrochimica Acta, vol. 282, pp. 64-80, 2018.
  • [30] D. Yiğit, M. Güllü, “N-Substituted poly (3, 6-dithienylcarbazole) derivatives: a new class of redox-active electrode materials for high-performance flexible solid-state pseudocapacitors,” Journal of Materials Chemistry A, vol. 5, no. 2, pp. 609-618, 2017.
  • [31] I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, “Conducting polymer‐based flexible supercapacitor,” Energy Science & Engineering, vol. 3, no.1, pp. 2-26, 2015.
  • [32] M. Lupacchini, A. Mascitti, G. Giachi, L. Tonucci, N. d'Alessandro, J. Martinez, E. Colacino, “Sonochemistry in non-conventional, green solvents or solvent-free reactions,” Tetrahedron, vol. 73, no. 6, pp. 609-653, 2017.
  • [33] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, “Polythiophene-based supercapacitors,” Journal of Power Sources, vol. 80, no. 1-2, pp. 142-148, 1999.
  • [34] E. Hür, G.A. Varol, A. Arslan, “The study of polythiophene, poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications,” Synthetic Metals, vol. 184, pp 16-22, 2013.
  • [35] J.P. Ferraris, M.M. Eissa, I.D. Brotherston, D.C. Loveday, “Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications,” Chemistry of Materials, vol. 10, no. 11, pp. 3528-3535, 1998.
  • [36] M. Mastragostino, C. Arbizzani, F. Soavi, “Conducting polymers as electrode materials in supercapacitors,” Solid State Ionics, vol. 148, pp. 493– 498, 2002.
  • [37] P. Soudan, H.A. Ho, L. Breau, D. Belanger, “Chemical Synthesis and Electrochemical Properties of Poly(cyano-substituted-diheteroareneethylene) as Conducting Polymers for Electrochemical Supercapacitors,” Journal of The Electrochemical Society, vol. 148, no. 7, pp. A775, 2001.
  • [38] K.S. Ryu, Y.G. Lee, Y.S. Hang, Y.J. Park, X. Wu, K. Wu, M.K. Kim, M.G. Kang, N.G. Park, S.H. Chang, “Poly(ethylenedioxythiopene) (PEDOT) as polymer electrode in redox supercapacitor,” Electrochimica Acta, vol. 50, no. 2-3, pp. 843-847, 2004.

2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi

Yıl 2022, Cilt: 10 Sayı: 1, 398 - 415, 31.01.2022
https://doi.org/10.29130/dubited.944357

Öz

Bu çalışmada, 2,3-di(tiyofen-3-il)piperazin esaslı iletken polimer türevlerinin elektrokimyasal yük depolama özellikleri incelenmiştir. Bu amaçla, ilk önce, ultrases destekli bir yöntem kullanılarak 2,3-di(tiyofen-3-il)piperazin halka sistemine sahip yeni elektroaktif monomerlerin sentezi gerçekleştirilmiştir. 2,3-Di(tiyofen-3-il)piperazin monomerleri elektrokimyasal olarak paslanmaz çelik substrat yüzeylerinde polimerleştirilmiş ve poli(2,3-di(tiyofen-3-il)piperazin (PTTP) ve poli(2,3-di(tiyofen-3-il)dekahidrokinoksalin (PTTQ) esaslı redoks aktif elektrot malzemeleri hazırlanmıştır. PTTP ve PTTQ redoks aktif malzemelerinin kapasitif performansları dönüşümlü voltametri (CV), galvanostatik şarj-deşarj (GCD) ve elektrokimyasal impedans spektroskopi (EIS) teknikleri kullanılarak araştırılmıştır. PTTP ve PTTQ esaslı elektrot malzemeleri 2,5 mAcm-2 sabit akım yoğunluğunda 175 Fg-1 ve 198 Fg-1 spesifik kapasitans değerlerine ulaşmıştır. Ayrıca, PTTP ve PTTQ, sırasıyla, 70,2 Whkg-1 ve 87,1 Whkg-1 enerji yoğunluğu değerleri ile 7 kWkg-1 ve 6,2 kWkg-1 güç yoğunluğu değerleri sergilemiştir. Bunun yanı sıra, PTTP ve PTTQ elektrot malzemeleri 10 000 şarj-deşarj döngüsü sonunda %80 ve %87,5 gibi oldukça yüksek uzun döngü ömrü kararlılıkları göstermiştir. Kapasitif performans test sonuçları PTTP ve PTTQ redoks aktif elektrot malzemelerinin yüksek performanslı pratik süperkapasitör uygulamalarında kullanılabilecek potansiyele sahip ümit vaat eden elektrot malzemeleri olduğunu ortaya koymuştur. 

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırmalar Kurumu (TÜBİTAK)

Proje Numarası

KBAG-114Z167

Teşekkür

Yazar, Türkiye Bilimsel ve Teknolojik Araştırmalar Kurumu’na (TÜBİTAK) KBAG-114Z167 nolu proje kapsamında sağlamış olduğu doktora sonrası araştırmacı bursu için teşekkür eder. Ayrıca, yazar, Prof. Dr. Mustafa GÜLLÜ’ ye (Ankara Üniversitesi, Fen Fakültesi, Kimya Bölümü) araştırma için sunmuş olduğu imkanlardan dolayı teşekkür eder.

Kaynakça

  • [1] D. Yiğit, Ş.O. Hacıoğlu, M. Güllü, L. Toppare, “Novel poly(2,5-dithienylpyrrole) (PSNS) derivatives functionalized with azobenzene, coumarin and fluorescein chromophore units: spectroelectrochemical properties and electrochromic device applications,” New Journal of Chemistry, vol. 39, no. 5, pp 3371-3379, 2015.
  • [2] A. Chaudhary, D.K. Pathak, M. Tanwar, P. Yogi, P.R. Sagdeo, R. Kumar, “Polythiophene–PCBM-based all-organic electrochromic device: fast and flexible,” ACS Applied Electronic Materials, vol. 1, no.1, pp. 58-63, 2019.
  • [3] M. Caliskan, M.C. Erer, S.T. Aslan, Y.A. Udum, L. Toppare, A. Cirpan, “Narrow band gap benzodithiophene and quinoxaline bearing conjugated polymers for organic photovoltaic applications,” Dyes and Pigments, vol. 180, pp. 108479, 2020.
  • [4] T.M. Clarke, A.M. Ballantyne, J. Nelson, D.D. Bradley, J.R. Durrant, (2008), “Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends,” Advanced Functional Materials, vol. 18, no. 24, pp. 4029-4035, 2008.
  • [5] C. Kok, C. Doyranli, B. Canımkurbey, S.P. Mucur, S. Koyuncu, “Effect of thiophene linker addition to fluorene-benzotriazole polymers with the purpose of achieving white emission in OLEDs,” RSC Advances, vol. 10, no. 32, pp. 18639-18647, 2020.
  • [6] J. Ohshita, Y. Tada, A. Kunai, Y. Harima, Y. Kunugi, “Hole-injection properties of annealed polythiophene films to replace PEDOT–PSS in multilayered OLED systems,” Synthetic Metals, vol. 159, no. 3-4, pp. 214-217, 2009.
  • [7] B. Li, D.N. Lambeth, “Chemical sensing using nanostructured polythiophene transistors,” Nano Letters, vol. 8, no. 11, pp. 3563-3567, 2008.
  • [8] T. Minamiki, Y. Hashima, Y. Sasaki, T. Minami, “An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water,” Chemical Communications, vol. 54, no. 50, pp. 6907-6910, 2018.
  • [9] C. Li, G. Shi, “Polythiophene-based optical sensors for small molecules,” ACS Applied Materials & Interfaces, vol. 5, no. 11, pp. 4503-4510, 2013.
  • [10] L. Torsi, A. Tafuri, N. Cioffi, M.C. Gallazzi, A. Sassella, L. Sabbatini, P.G. Zambonin, “Regioregular polythiophene field-effect transistors employed as chemical sensors,” Sensors and Actuators B: Chemical, vol. 93, no. 1-3, pp. 257-262, 2003.
  • [11] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, “A review of supercapacitor modeling, estimation, and applications: A control/management perspective,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1868-1878, 2018.
  • [12] J.G. Ibanez, M.E. Rincón, S. Gutierrez-Granados, M.H. Chahma, O.A. Jaramillo-Quintero, B.A. Frontana-Uribe, “Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors,” Chemical Reviews, vol. 118, no. 9, pp. 4731-4816, 2018.
  • [13] K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, Y.H. Lee, “Supercapacitors using single‐walled carbon nanotube electrodes,” Advanced Materials, vol. 13, no. 7, pp. 497-500, 2001.
  • [14] J.R. McDonough, J.W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, “Carbon nanofiber supercapacitors with large areal capacitances,” Applied Physics Letters, vol. 95, no. 24, pp. 243109, 2009.
  • [15] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, “Supercapacitor devices based on graphene materials,” The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13103-13107, 2009.
  • [16] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Letters, vol. 12, no. 3, pp. 1690-1696, 2012.
  • [17] S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, “Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application,” Applied Surface Science, vol. 257, no. 22, pp. 9498-9502, 2011.
  • [18] J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.D. Kim, “Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors,” Electrochimica Acta, vol. 56, no. 13, pp. 4849-4857, 2011.
  • [19] K.M. Lin, K.H. Chang, C.C. Hu, Y.Y. Li, “Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density,” Electrochimica Acta, vol. 54, no. 19, pp. 4574-4581, 2009.
  • [20] B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, “Interconnected V2O5 nanoporous network for high-performance supercapacitors,” ACS Applied Materials & Interfaces, vol. 4, no.9, pp. 4484-4490, 2012.
  • [21] J.G. Wang, F. Kang, B. Wei, “Engineering of MnO2-based nanocomposites for high-performance supercapacitors,” Progress in Materials Science, vol. 74, pp. 51-124, 2015.
  • [22] T.O. Magu, A.U. Agobi, L. Hitler, P.M. Dass, “A review on conducting polymers-based composites for energy storage application,” Journal of Chemical Reviews, vol. 1, no. 1, pp. 19-34, 2019.
  • [23] A. Eftekhari, L. Li, Y. Yang, “Polyaniline supercapacitors,” Journal of Power Sources, vol. 347, pp. 86-107, 2017.
  • [24] X. Wang, M. Xu, Y. Fu, S. Wang, T. Yang, K. Jiao, “A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application,” Electrochimica Acta, vol. 222, pp. 701-708, 2016.
  • [25] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q, Xue, C. Zhi, “Nanostructured polypyrrole as a flexible electrode material of supercapacitor,” Nano Energy, vol. 22, pp. 422-438, 2016.
  • [26] R.K. Sharma, A.C. Rastogi, S.B. Desu, “Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor,” Electrochemistry Communications, vol. 10, no. 2, pp. 268-272, 2008.
  • [27] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, “Polythiophene-based supercapacitors,” Journal of Power Sources, vol. 80, no. 1-2, pp. 142-148, 1999.
  • [28] R.B. Ambade, S.B. Ambade, R.R. Salunkhe, V. Malgras, S.H. Jin, Y. Yamauchi, S.H. Lee, “Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density,” Journal of Materials Chemistry A, vol. 4, no. 19, pp. 7406-7415, 2016.
  • [29] D. Yiğit, M. Güllü, “Capacitive properties of novel N-alkyl substituted poly (3, 6-dithienyl-9H-carbazole) s as redox electrode materials and their symmetric micro-supercapacitor applications,” Electrochimica Acta, vol. 282, pp. 64-80, 2018.
  • [30] D. Yiğit, M. Güllü, “N-Substituted poly (3, 6-dithienylcarbazole) derivatives: a new class of redox-active electrode materials for high-performance flexible solid-state pseudocapacitors,” Journal of Materials Chemistry A, vol. 5, no. 2, pp. 609-618, 2017.
  • [31] I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, “Conducting polymer‐based flexible supercapacitor,” Energy Science & Engineering, vol. 3, no.1, pp. 2-26, 2015.
  • [32] M. Lupacchini, A. Mascitti, G. Giachi, L. Tonucci, N. d'Alessandro, J. Martinez, E. Colacino, “Sonochemistry in non-conventional, green solvents or solvent-free reactions,” Tetrahedron, vol. 73, no. 6, pp. 609-653, 2017.
  • [33] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, “Polythiophene-based supercapacitors,” Journal of Power Sources, vol. 80, no. 1-2, pp. 142-148, 1999.
  • [34] E. Hür, G.A. Varol, A. Arslan, “The study of polythiophene, poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications,” Synthetic Metals, vol. 184, pp 16-22, 2013.
  • [35] J.P. Ferraris, M.M. Eissa, I.D. Brotherston, D.C. Loveday, “Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications,” Chemistry of Materials, vol. 10, no. 11, pp. 3528-3535, 1998.
  • [36] M. Mastragostino, C. Arbizzani, F. Soavi, “Conducting polymers as electrode materials in supercapacitors,” Solid State Ionics, vol. 148, pp. 493– 498, 2002.
  • [37] P. Soudan, H.A. Ho, L. Breau, D. Belanger, “Chemical Synthesis and Electrochemical Properties of Poly(cyano-substituted-diheteroareneethylene) as Conducting Polymers for Electrochemical Supercapacitors,” Journal of The Electrochemical Society, vol. 148, no. 7, pp. A775, 2001.
  • [38] K.S. Ryu, Y.G. Lee, Y.S. Hang, Y.J. Park, X. Wu, K. Wu, M.K. Kim, M.G. Kang, N.G. Park, S.H. Chang, “Poly(ethylenedioxythiopene) (PEDOT) as polymer electrode in redox supercapacitor,” Electrochimica Acta, vol. 50, no. 2-3, pp. 843-847, 2004.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Yiğit 0000-0003-2211-7114

Proje Numarası KBAG-114Z167
Yayımlanma Tarihi 31 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Yiğit, D. (2022). 2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(1), 398-415. https://doi.org/10.29130/dubited.944357
AMA Yiğit D. 2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi. DÜBİTED. Ocak 2022;10(1):398-415. doi:10.29130/dubited.944357
Chicago Yiğit, Deniz. “2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması Ve Süperkapasitör Davranışlarının İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, sy. 1 (Ocak 2022): 398-415. https://doi.org/10.29130/dubited.944357.
EndNote Yiğit D (01 Ocak 2022) 2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 1 398–415.
IEEE D. Yiğit, “2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi”, DÜBİTED, c. 10, sy. 1, ss. 398–415, 2022, doi: 10.29130/dubited.944357.
ISNAD Yiğit, Deniz. “2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması Ve Süperkapasitör Davranışlarının İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/1 (Ocak 2022), 398-415. https://doi.org/10.29130/dubited.944357.
JAMA Yiğit D. 2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi. DÜBİTED. 2022;10:398–415.
MLA Yiğit, Deniz. “2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması Ve Süperkapasitör Davranışlarının İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 10, sy. 1, 2022, ss. 398-15, doi:10.29130/dubited.944357.
Vancouver Yiğit D. 2,3-Di(tiyofen-3-il)piperazin Monomerlerinin Ultrases Destekli Sentezi, İletken Polimerlerinin Hazırlanması ve Süperkapasitör Davranışlarının İncelenmesi. DÜBİTED. 2022;10(1):398-415.