Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating of Effects on Energy Loads of Residential Buildings of Using Phase Change Metarials in the Ventilated Exterior Wall Constructions

Yıl 2022, Cilt: 10 Sayı: 2, 522 - 536, 30.04.2022
https://doi.org/10.29130/dubited.870517

Öz

A significant portion of the energy in buildings is used for heating and cooling. The European directive (EPBD-Recast) promotes higher levels of thermal insulation and lightweight buildings in order to reduce the negative environmental impacts from this energy use. The biggest disadvantage of lightweight buildings is their low thermal mass. In recent years, PCM, which save energy by increasing the thermal mass of lightweight buildings and store energy as latent heat in thermal mass, have attracted great interest as an alternative and important views are given that they can reduce the energy loads of buildings. The aim of this study is to determine to what extent energy loads can be improved by using PCM in exterior wall constructions in the building envelope. In this context, this study is composed of two stages. In the first stage, data were obtained under the titles of usage places, types, joining techniques and used simulation programs of phase change materials with the literatüre research. For this purpose, BioPCMs with melting points of 21 0C and 23 0C were used in thicknesses of 24, 36, 48 and 60 mm and applied to the inner surface of the wall construction with 15, 25, 35 and 45 mm air gaps. The scenarios of the wall construction created were used in the exterior wall constructions of a single-storey residence with a floor area of 150 m2, which was hypothetically designed with the Design Builder simulation program, using the climate data of the province of Trabzon with a moderate-humid climate. Annual total heating-cooling energy loads of the scenarios were calculated. As a result of the study, it has been determined that ventilated wall constructions developed with the use of PCM can provide an improvement between 2% and 10% in building energy loads, and most importantly, it is of great importance that PCMs are developed as a low cost and sustainable material suitable for use in the building envelope in all climatic conditions.

Kaynakça

  • [1] Directive 2010/31/EU of the European Parliament and of the Council on energy performance of buildings (recast), Official journal of the European Union, May 19th, 2010.
  • [2] J. Kosny, PCM- Enhanced Building Components, 1st ed., London, UK: Springer, 2015, ch. 1, pp. 21-59.
  • [3] W. J. Gonzales-Espada, L.A. Bryan and N-H. Kang, “The intriguing physics inside an igloo,” Physics Education, vol. 36, no. 4, pp. 290-298, 2001.
  • [4] M. Telkes, Trombe Wall with Phase Change Storage Material, 1st ed., Philadelphia, USA: American Section, International Solar Energy Society, 1978, pp. 350-363.
  • [5] P.T. Leang, L. Zalewski and S. L. Enghok, “Numerical study of a composite trombe solar wall integrating microencapsulated (PCM),” Energy Procedia, vol. 122, pp. 1009-1014, 2017.
  • [6] F. Fiorito, “Trombe walls for lightweight buildings in temperate and hot climates exploring the use of phase change materials for performances improvement,” Energy Procedia, vol. 30, pp. 1110– 1119, 2012.
  • [7] G. P. Panayiotou, S. A. Kalogirou and S. A. Tassou, “Evaluation of the application of phase change materials (PCM) on the envelope of a typical dwelling in the mediterranean region,” Renewable Energy, vol. 97, pp. 24-32, 2016.
  • [8] L. Kancane, R. Vanaga and A. Blumberga, “Modeling of building envelope’s thermal properties by applying phase change materials,” Energy Procedia, vol. 95, pp. 175-180, 2016.
  • [9] A. Tokuç, “Faz değişim malzemelerinin ısıl enerji depolama amacıyla yapı elemanlarında kullanılması,” Doktora tezi, Mimarlık Bölümü, Dokuz Eylül Üniversitesi, İzmir, Türkiye, 2013.
  • [10] G. Evola, L. Marletta and F. Sicurella, “A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings,” Building Environment, vol. 59, pp. 517-527, 2013.
  • [11] N. Soares, J. J. Costa, A. R. Gasparand and P. Santos, “Review of passive PCM latent heat thermal energy storage systems towards buildings,” Energy Efficiency, vol. 59, pp. 82-103, 2013.
  • [12] P. Schossig, H. M. Henning, S. Gschwanderand and T. Haussmann, “Microencapsulated phase-change materials integrated into construction materials,” Solar Energy Materials and Solar Cells, vol. 89, no. 2–3, pp. 297-306, 2005.
  • [13] Katahdin Cedar Log Homes. (2013, August 15). Green tip: Thermal mass insulation through phase change materials. [Online]. Available: https://www.katahdincedarloghomes.com/blog/green-tip-thermal-mass-insulation-through-phase-change-materials/.
  • [14] E. Leang, P. Tittelein, L. Zalewskiand and S. L. Enghok, “Numerical study of a composite trombe solar wall integrating microencapsulated (PCM),” Energy Procedia, vol. 122, pp. 1009-1014, 2017.
  • [15] A. Graciaa and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy and Buildings, vol. 103, no. 15, pp. 414-419, 2015.
  • [16] F. Kuznik, J. Virgone and J. Noel, “Optimization of a phase change material wallboard for building use,” Applied Thermal Engineering, vol. 28, no. 11–12, pp. 1291–1298, 2008.
  • [17] A. D. Gracia and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy and Buildings, vol. 103, no. 15, pp. 414-419, 2015.
  • [18] F. Kuznik, J. Virgone and J. J. Roux, “Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation,” Energy and Buildings, vol. 40, no. 2, pp. 148–156, 2008.
  • [19] L. Kancane, R. Vanaga and A. Blumberga, “ Modeling of building envelope’s thermal properties by applying phase change materials,” Energy Procedia, vol. 95 , pp. 175-180, 2016.
  • [20] A. K. Çırakman, “Faz değiştiren madde içeren bina güney duvarının deneysel olarak incelenmesi,” Doktora tezi, Makine Mühendisliği Bölümü, Atatürk Üniversitesi, Erzurum, Türkiye, 2010.
  • [21] Y. Konuklu, “Mikrokapsüllenmiş faz değiştiren maddelerde termal enerji depolama ile binalarda enerji tasarrufu,” Doktora tezi, Kimya Bölümü, Çukurova Üniversitesi, Adana, Türkiye, 2008.
  • [22] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil and D. Rousse, “ Experimental study of small-scale solar wall integrating phase change material,” Solar Energy, vol. 86, no. 1, pp. 208-219, 2012.
  • [23] B. M. Diaconu and M. Cruceru, “ Novel concept of composite phase change material wall system for year-round thermal energy savings,” Energy and Buildings, vol. 42, no. 10, pp. 1759-1772, 2010.
  • [24] F. Guarino, V. Dermardiros, Y. Chen, J. Rao, A. Athienitis, M. Cellura and M. Mistretta, “ PCM thermal energy storage in buildings: experimental study and applications,” Energy Procedia, vol. 70, pp. 219-228, 2015.
  • [25] G. P. Panayiotou, S. A. Kalogirou and S. A. Tassou, “Evaluation of the application of phase change materials (PCM) on the envelope of a typical dwelling in the mediterranean region,” Renewable Energy, vol. 97, pp. 24-32, 2016.
  • [26] A. Laaouatni, N. Martaj, R. Bennacer, E.O. Mohamed Mohammed and E. Ganaoui, “Phase change materials for improving the building thermal inertia,” Energy Procedia, vol. 139, pp. 744–749, 2017.
  • [27] Z. Wuand and M. Q. Z. Chen, “Phase change humidity control material and its application in buildings,” Procedia Engineering, vol. 205, pp. 1011–1018, 2017.
  • [28] S. Ramakrishnan, X. Wang, J. Sanjayan and J. Wilson,“Experimental and numerical study on energy performance of buildings ıntegrated with phase change materials,” Energy Procedia, vol. 105, pp. 2214-2219, 2016.
  • [29] Y. Han and J.E. Taylor, “Simulating the impact of phase change material embedded building envelopes on the inter-building effect in non-tropical cities,” Procedia Engineering, vol. 118, pp. 760- 765, 2015.
  • [30] W. I. W. M. Nazi, Y. Wang, H. Chen, X. Zhang and A. P. Roskilly, “Passive cooling using phase change material and insulation for high-rise office building in tropical climate,” Energy Procedia, vol. 142, pp. 2295–2302, 2017.
  • [31] Y. Li, J. Darkw and W. Su, “Investigation on thermal performance of an integrated phase change material blind system for double skin façade buildings,” Energy Procedia, vol. 158, pp. 5116–5123, 2019.
  • [32] M. Auzeby, S. Wei, C. Underwood, C. Chen, H. Lin., S. Pan, B. Ng, J. Tindall and R. Buswell, “Using phase change materials to reduce overheating issues in UK residential buildings,” Energy Procedia, vol. 105, pp. 4072-4077, 2017.
  • [33] T. Mols, K. P. Dzene, R. Vanaga, R. Freimanis and A. Blumberga, “Experimental study of small-scale passive solar wall module with phase change material and fresnel lens,” Energy Procedia, vol. 147, pp. 467–473, 2018.
  • [34] Y. Li, W. Liang, J. Zhou and E. Long, “Experimental study on thermal performance improvement of building envelopes integrated with phase change materials in an air-conditioned room,” Procedia Engineering, vol. 205, pp. 190–197, 2017.
  • [35] F. Guarino, S. L. M. Cellura, M. Mistretta and V. La Rocca, “Phase change materials applications to optimize cooling performance of buildings in the mediterranean area: a parametric analysis,” Energy Procedia, vol. 78, pp. 1708-1713, 2015.
  • [36] Y. Li, Y. Wang, X. Meng, M. Wang and E. Long, “Research on indoor thermal environment improvement of lightweight building integrated with phase change material under different climate conditions,” Procedia Engineering, vol. 121, pp. 1628-1634, 2015.
  • [37] A. S. Bejan and T. Catalina, “The implementation of phase changing materials in energy efficient buildings. case study: efden project,” Energy Procedia, vol. 85, pp. 52-59, 2016.
  • [38] Q. Ma, H. Fukuda, X. Wei and A. Hariyadi, “Optimizing energy performance of a ventilated composite trombe wall in an office building,” Renewable Energy, vol. 134, pp. 1285-1294, 2018.
  • [39] E. Meng, H. Yuand and B. Zhou, “ Study of the thermal behavior of the composite phase change material (PCM) room ın summer and winter,” Applied Thermal Engineering, vol. 126, pp. 212–225, 2017.
  • [40] S. Soudian and U. Berardi, “Experimental investigation of latent thermal energy storage in highrise residential buildings in Toronto,” Energy Procedia, vol. 132, pp. 249–254, 2017.
  • [41] J. Xie, W. Wang, J. Liu and S. Pan, “Thermal performance analysis of PCM wallboards for building application based on numerical simulation,” Solar Energy, vol. 162, pp. 533–540, 2018.
  • [42] S. Li, N. Zhu, P. Hu, F. Lei and R. Deng, “Numerical study on thermal performance of PCM trombe wall,” Energy Procedia, vol. 158, pp. 2441–2447, 2019.
  • [43] S. M. Sajjadian, J. Lewis and S. Sharples, “The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates,” Energy and Buildings, vol. 93, pp. 83–89, 2015.
  • [44] P. Principi, C. Di Perna, G. Borrelli and A. Carbonari, “Experimental energetic evaluation of changeable thermal ınertia PCM containing walls,” presented at 482th International Conference Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 2005, pp. 481-486
  • [45] P. Schossig and H.M. Henning, S. Gschwander ve T. Haussmann, “Microencapsulated phase-change materials integrated into construction materials,” Solar Energy Materials and Solar Cells, vol. 89, no. 2–3, pp. 297–306, 2005.
  • [46] D. Zhou, C. Y. Zhao and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593–605, 2012.
  • [47] N. Soares, J.J. Costa, A.R. Gaspar and P. Santos, “Review of passive pcm latent heat thermal energy storage systems towards buildings energy efficiency,” Energy and Buildings, vol. 59, pp. 82-103, 2013.
  • [48] A. Karaoulis, “Investigation of energy performance in conventional and lightweight building components with the use of phase change materials (PCMs): energy savings in summer season,” Procedia Environmental Sciences, vol. 38, pp. 796-803, 2017.
  • [49] E. Köse and G. Manioğlu, “Evaluation of the performance of phase change materials in relation to balanced distribution of heating energy cost in residential buildings,” REHVA Journal, vol. 2, pp. 52-57, 2018.
  • [50] A.I. Mays, R. Ammar, M. Hawa and M. A. A. Farouk, “Using phase change material in under floor heating,” Energy Procedia, vol. 119, pp. 806–811, 2017.
  • [51] M. Alama, J. Sanjayan, X. W. Patrick, Z. S. Ramakrishnan and J. Wilson, “A comparative study on the effectiveness of passive and free cooling application methods of phase change materials for energy efficient retrofitting in residential buildings,” Procedia Engineering, vol. 180, pp. 993–1002, 2016.
  • [52] T. Knowles,“Proportioning composites for efficient thermal storage walls,” Solar Energy, vol. 31, no. 3, pp. 319-326, 1983.
  • [53] M. M. Farid, A. M. Khudhai, S. Ali and K. Razack,“A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, pp. 1597–1615, 2004.
  • [54] Y. Cui, J. Xie, J. Liu and S. Pan, “ Review of phase change materials integrated in building walls for energy saving,” Procedia Engineering, vol. 121, pp. 763-770, 2015.
  • [55] K. Cellat, “Binalarda enerji tasarrufu için güneş enerjisini faz değiştiren maddede pasif depolayan yeni beton karışımların geliştirilmesi ve uygulanması,” Doktora tezi, Kimya Bölümü, Çukurova Üniversitesi, Adana, Türkiye, 2017.
  • [56] M. M. Farid, A. M. Khudhair, S. A. K. Razack and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, pp. 1597–1615, 2004.
  • [57] A. V. Pasupathy and R. Velraj, “Phase change material based thermal storage for energy conservation in building architecture,” International Energy Journal, vol. 7, no. 2, pp. 147-159, 2006.
  • [58] H. B. Madessa, “A review of the performance of buildings integrated with phase change material: opportunities for application in cold climate,” Energy Procedia, vol. 62, pp. 318 – 328, 2014.
  • [59] L. Navarro, A. D. Garcia, C. Solé, A. Castelland and L. F. Cabeza, “Thermal loads inside buildings with phase change materials: experimental results,” Energy Procedia, vol. 30, pp. 342 – 349, 2012.
  • [60] N. Hanchi, H. Hamza, J. Lahjomri and A. Oubarra,“Thermal behavior in dynamic regime of a multilayer roof provided with two phase change materials in the case of a local conditioned,” Energy Procedia, vol. 139, pp. 92–97, 2017.
  • [61] V. D. Cao, S. Pilehvar, C. Salas-Bringas, A. M. Szczotok, J. F. Rodriguez, M. Carmona, N. Al-Manasir and A. L. Kjøniksen, “Microencapsulated phase change materials for enhancing the thermal performance of portland cement concrete and geopolymer concrete for passive building applications,” Energy Conversion and Management, vol. 133, pp. 56–66, 2017.
  • [62] A. L. Pisello, V. L. Castaldo and F. Cotana, “Dynamic thermal-energy performance analysis of a prototype building with integrated phase change materials,” Energy Procedia, vol. 81, pp. 82-88, 2015.
  • [63] Binalarda ısı yalıtım kuralları, Türk Standartlar Enstitüsü TS825, 2010.
  • [64] Design Builder, Bilgisayar Programı, v6.1.8.021 versiyon, Gloucestershire (UK), DesignBuilder Software Limited, 2021.

Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi

Yıl 2022, Cilt: 10 Sayı: 2, 522 - 536, 30.04.2022
https://doi.org/10.29130/dubited.870517

Öz

Binalarda enerjinin önemli bir kısmı ısıtma ve soğutma için kullanılmaktadır. Avrupa direktifi (EPBD-Recast) bu enerji kullanımından kaynaklı olumsuz çevresel etkileri azaltmak amacıyla, daha yüksek ısı yalıtımı seviyelerini ve hafif binaları teşvik etmektedir. Hafif binaların en büyük dezavantajı ise düşük termal kütleleridir. Son yıllarda hafif binaların termal kütlelerini artırarak enerji tasarrufu sağlayan ve enerjiyi termal kütlede gizli ısı olarak depolayan faz değiştiren malzemeler (FDM), bir alternatif olarak büyük ilgi görmekte ve binaların enerji yüklerini azaltabileceği yönünde önemli görüşlere yer verilmektedir. Bu çalışmada amaç bina kabuğunda dış duvar konstrüksiyonlarında FDM kullanımı ile ne oranda enerji yüklerinde bir iyileştirme sağlanabileceğinin tespit edilmesidir. Bu bağlamda, bu çalışma iki aşamadan oluşturulmuştur. İlk aşamada literatür araştırması ile faz değiştiren malzemelerin binada kullanım yerleri, çeşitleri, birleştirme teknikleri ve kullanılan simülasyon programları başlıklarında veriler elde edilmiştir. İkinci aşamada literatür araştırmasında elde edilen veriler doğrultusunda FDM’nin referans duvar konstrüksiyonlarının iç yüzeyine hava boşluğu bırakılarak uygulanmasına karar verilmiştir. Bu amaçla 21 ve 23 0C’lik erime noktasına sahip BioPCM'ler, 24, 36, 48 ve 60 mm'lik kalınlıklarda kullanılarak 15, 25, 35 ve 45 mm'lik hava boşluklarına sahip duvar konstrüksiyonlarının iç yüzeyine uygulanmıştır. Oluşturulan duvar konstrüksiyonlarına ait senaryolar ılıman-nemli iklime sahip Trabzon ili iklim verileri kullanılarak Design Builder simülasyon programı ile varsayımsal olarak tasarlanmış tek katlı 150 m2 taban alanına sahip bir konutun dış duvar konstrüksiyonlarında kullanılmıştır. Senaryoların yıllık toplam ısıtma-soğutma enerji yükleri hesaplanmıştır. Çalışma sonucunda, FDM kullanımı ile geliştirilen havalandırmalı duvar konstrüksiyonlarının bina enerji yüklerinde %2 ile %6 arasında iyileştirme sağlayabileceği ve en önemlisi FDM’lerin her iklim koşulunda bina kabuğunda kullanıma uygun, düşük maliyetli ve sürdürülebilir bir malzeme olarak geliştirilmesinin büyük önem arz ettiği belirlenmiştir.

Kaynakça

  • [1] Directive 2010/31/EU of the European Parliament and of the Council on energy performance of buildings (recast), Official journal of the European Union, May 19th, 2010.
  • [2] J. Kosny, PCM- Enhanced Building Components, 1st ed., London, UK: Springer, 2015, ch. 1, pp. 21-59.
  • [3] W. J. Gonzales-Espada, L.A. Bryan and N-H. Kang, “The intriguing physics inside an igloo,” Physics Education, vol. 36, no. 4, pp. 290-298, 2001.
  • [4] M. Telkes, Trombe Wall with Phase Change Storage Material, 1st ed., Philadelphia, USA: American Section, International Solar Energy Society, 1978, pp. 350-363.
  • [5] P.T. Leang, L. Zalewski and S. L. Enghok, “Numerical study of a composite trombe solar wall integrating microencapsulated (PCM),” Energy Procedia, vol. 122, pp. 1009-1014, 2017.
  • [6] F. Fiorito, “Trombe walls for lightweight buildings in temperate and hot climates exploring the use of phase change materials for performances improvement,” Energy Procedia, vol. 30, pp. 1110– 1119, 2012.
  • [7] G. P. Panayiotou, S. A. Kalogirou and S. A. Tassou, “Evaluation of the application of phase change materials (PCM) on the envelope of a typical dwelling in the mediterranean region,” Renewable Energy, vol. 97, pp. 24-32, 2016.
  • [8] L. Kancane, R. Vanaga and A. Blumberga, “Modeling of building envelope’s thermal properties by applying phase change materials,” Energy Procedia, vol. 95, pp. 175-180, 2016.
  • [9] A. Tokuç, “Faz değişim malzemelerinin ısıl enerji depolama amacıyla yapı elemanlarında kullanılması,” Doktora tezi, Mimarlık Bölümü, Dokuz Eylül Üniversitesi, İzmir, Türkiye, 2013.
  • [10] G. Evola, L. Marletta and F. Sicurella, “A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings,” Building Environment, vol. 59, pp. 517-527, 2013.
  • [11] N. Soares, J. J. Costa, A. R. Gasparand and P. Santos, “Review of passive PCM latent heat thermal energy storage systems towards buildings,” Energy Efficiency, vol. 59, pp. 82-103, 2013.
  • [12] P. Schossig, H. M. Henning, S. Gschwanderand and T. Haussmann, “Microencapsulated phase-change materials integrated into construction materials,” Solar Energy Materials and Solar Cells, vol. 89, no. 2–3, pp. 297-306, 2005.
  • [13] Katahdin Cedar Log Homes. (2013, August 15). Green tip: Thermal mass insulation through phase change materials. [Online]. Available: https://www.katahdincedarloghomes.com/blog/green-tip-thermal-mass-insulation-through-phase-change-materials/.
  • [14] E. Leang, P. Tittelein, L. Zalewskiand and S. L. Enghok, “Numerical study of a composite trombe solar wall integrating microencapsulated (PCM),” Energy Procedia, vol. 122, pp. 1009-1014, 2017.
  • [15] A. Graciaa and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy and Buildings, vol. 103, no. 15, pp. 414-419, 2015.
  • [16] F. Kuznik, J. Virgone and J. Noel, “Optimization of a phase change material wallboard for building use,” Applied Thermal Engineering, vol. 28, no. 11–12, pp. 1291–1298, 2008.
  • [17] A. D. Gracia and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy and Buildings, vol. 103, no. 15, pp. 414-419, 2015.
  • [18] F. Kuznik, J. Virgone and J. J. Roux, “Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation,” Energy and Buildings, vol. 40, no. 2, pp. 148–156, 2008.
  • [19] L. Kancane, R. Vanaga and A. Blumberga, “ Modeling of building envelope’s thermal properties by applying phase change materials,” Energy Procedia, vol. 95 , pp. 175-180, 2016.
  • [20] A. K. Çırakman, “Faz değiştiren madde içeren bina güney duvarının deneysel olarak incelenmesi,” Doktora tezi, Makine Mühendisliği Bölümü, Atatürk Üniversitesi, Erzurum, Türkiye, 2010.
  • [21] Y. Konuklu, “Mikrokapsüllenmiş faz değiştiren maddelerde termal enerji depolama ile binalarda enerji tasarrufu,” Doktora tezi, Kimya Bölümü, Çukurova Üniversitesi, Adana, Türkiye, 2008.
  • [22] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil and D. Rousse, “ Experimental study of small-scale solar wall integrating phase change material,” Solar Energy, vol. 86, no. 1, pp. 208-219, 2012.
  • [23] B. M. Diaconu and M. Cruceru, “ Novel concept of composite phase change material wall system for year-round thermal energy savings,” Energy and Buildings, vol. 42, no. 10, pp. 1759-1772, 2010.
  • [24] F. Guarino, V. Dermardiros, Y. Chen, J. Rao, A. Athienitis, M. Cellura and M. Mistretta, “ PCM thermal energy storage in buildings: experimental study and applications,” Energy Procedia, vol. 70, pp. 219-228, 2015.
  • [25] G. P. Panayiotou, S. A. Kalogirou and S. A. Tassou, “Evaluation of the application of phase change materials (PCM) on the envelope of a typical dwelling in the mediterranean region,” Renewable Energy, vol. 97, pp. 24-32, 2016.
  • [26] A. Laaouatni, N. Martaj, R. Bennacer, E.O. Mohamed Mohammed and E. Ganaoui, “Phase change materials for improving the building thermal inertia,” Energy Procedia, vol. 139, pp. 744–749, 2017.
  • [27] Z. Wuand and M. Q. Z. Chen, “Phase change humidity control material and its application in buildings,” Procedia Engineering, vol. 205, pp. 1011–1018, 2017.
  • [28] S. Ramakrishnan, X. Wang, J. Sanjayan and J. Wilson,“Experimental and numerical study on energy performance of buildings ıntegrated with phase change materials,” Energy Procedia, vol. 105, pp. 2214-2219, 2016.
  • [29] Y. Han and J.E. Taylor, “Simulating the impact of phase change material embedded building envelopes on the inter-building effect in non-tropical cities,” Procedia Engineering, vol. 118, pp. 760- 765, 2015.
  • [30] W. I. W. M. Nazi, Y. Wang, H. Chen, X. Zhang and A. P. Roskilly, “Passive cooling using phase change material and insulation for high-rise office building in tropical climate,” Energy Procedia, vol. 142, pp. 2295–2302, 2017.
  • [31] Y. Li, J. Darkw and W. Su, “Investigation on thermal performance of an integrated phase change material blind system for double skin façade buildings,” Energy Procedia, vol. 158, pp. 5116–5123, 2019.
  • [32] M. Auzeby, S. Wei, C. Underwood, C. Chen, H. Lin., S. Pan, B. Ng, J. Tindall and R. Buswell, “Using phase change materials to reduce overheating issues in UK residential buildings,” Energy Procedia, vol. 105, pp. 4072-4077, 2017.
  • [33] T. Mols, K. P. Dzene, R. Vanaga, R. Freimanis and A. Blumberga, “Experimental study of small-scale passive solar wall module with phase change material and fresnel lens,” Energy Procedia, vol. 147, pp. 467–473, 2018.
  • [34] Y. Li, W. Liang, J. Zhou and E. Long, “Experimental study on thermal performance improvement of building envelopes integrated with phase change materials in an air-conditioned room,” Procedia Engineering, vol. 205, pp. 190–197, 2017.
  • [35] F. Guarino, S. L. M. Cellura, M. Mistretta and V. La Rocca, “Phase change materials applications to optimize cooling performance of buildings in the mediterranean area: a parametric analysis,” Energy Procedia, vol. 78, pp. 1708-1713, 2015.
  • [36] Y. Li, Y. Wang, X. Meng, M. Wang and E. Long, “Research on indoor thermal environment improvement of lightweight building integrated with phase change material under different climate conditions,” Procedia Engineering, vol. 121, pp. 1628-1634, 2015.
  • [37] A. S. Bejan and T. Catalina, “The implementation of phase changing materials in energy efficient buildings. case study: efden project,” Energy Procedia, vol. 85, pp. 52-59, 2016.
  • [38] Q. Ma, H. Fukuda, X. Wei and A. Hariyadi, “Optimizing energy performance of a ventilated composite trombe wall in an office building,” Renewable Energy, vol. 134, pp. 1285-1294, 2018.
  • [39] E. Meng, H. Yuand and B. Zhou, “ Study of the thermal behavior of the composite phase change material (PCM) room ın summer and winter,” Applied Thermal Engineering, vol. 126, pp. 212–225, 2017.
  • [40] S. Soudian and U. Berardi, “Experimental investigation of latent thermal energy storage in highrise residential buildings in Toronto,” Energy Procedia, vol. 132, pp. 249–254, 2017.
  • [41] J. Xie, W. Wang, J. Liu and S. Pan, “Thermal performance analysis of PCM wallboards for building application based on numerical simulation,” Solar Energy, vol. 162, pp. 533–540, 2018.
  • [42] S. Li, N. Zhu, P. Hu, F. Lei and R. Deng, “Numerical study on thermal performance of PCM trombe wall,” Energy Procedia, vol. 158, pp. 2441–2447, 2019.
  • [43] S. M. Sajjadian, J. Lewis and S. Sharples, “The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates,” Energy and Buildings, vol. 93, pp. 83–89, 2015.
  • [44] P. Principi, C. Di Perna, G. Borrelli and A. Carbonari, “Experimental energetic evaluation of changeable thermal ınertia PCM containing walls,” presented at 482th International Conference Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 2005, pp. 481-486
  • [45] P. Schossig and H.M. Henning, S. Gschwander ve T. Haussmann, “Microencapsulated phase-change materials integrated into construction materials,” Solar Energy Materials and Solar Cells, vol. 89, no. 2–3, pp. 297–306, 2005.
  • [46] D. Zhou, C. Y. Zhao and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593–605, 2012.
  • [47] N. Soares, J.J. Costa, A.R. Gaspar and P. Santos, “Review of passive pcm latent heat thermal energy storage systems towards buildings energy efficiency,” Energy and Buildings, vol. 59, pp. 82-103, 2013.
  • [48] A. Karaoulis, “Investigation of energy performance in conventional and lightweight building components with the use of phase change materials (PCMs): energy savings in summer season,” Procedia Environmental Sciences, vol. 38, pp. 796-803, 2017.
  • [49] E. Köse and G. Manioğlu, “Evaluation of the performance of phase change materials in relation to balanced distribution of heating energy cost in residential buildings,” REHVA Journal, vol. 2, pp. 52-57, 2018.
  • [50] A.I. Mays, R. Ammar, M. Hawa and M. A. A. Farouk, “Using phase change material in under floor heating,” Energy Procedia, vol. 119, pp. 806–811, 2017.
  • [51] M. Alama, J. Sanjayan, X. W. Patrick, Z. S. Ramakrishnan and J. Wilson, “A comparative study on the effectiveness of passive and free cooling application methods of phase change materials for energy efficient retrofitting in residential buildings,” Procedia Engineering, vol. 180, pp. 993–1002, 2016.
  • [52] T. Knowles,“Proportioning composites for efficient thermal storage walls,” Solar Energy, vol. 31, no. 3, pp. 319-326, 1983.
  • [53] M. M. Farid, A. M. Khudhai, S. Ali and K. Razack,“A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, pp. 1597–1615, 2004.
  • [54] Y. Cui, J. Xie, J. Liu and S. Pan, “ Review of phase change materials integrated in building walls for energy saving,” Procedia Engineering, vol. 121, pp. 763-770, 2015.
  • [55] K. Cellat, “Binalarda enerji tasarrufu için güneş enerjisini faz değiştiren maddede pasif depolayan yeni beton karışımların geliştirilmesi ve uygulanması,” Doktora tezi, Kimya Bölümü, Çukurova Üniversitesi, Adana, Türkiye, 2017.
  • [56] M. M. Farid, A. M. Khudhair, S. A. K. Razack and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, pp. 1597–1615, 2004.
  • [57] A. V. Pasupathy and R. Velraj, “Phase change material based thermal storage for energy conservation in building architecture,” International Energy Journal, vol. 7, no. 2, pp. 147-159, 2006.
  • [58] H. B. Madessa, “A review of the performance of buildings integrated with phase change material: opportunities for application in cold climate,” Energy Procedia, vol. 62, pp. 318 – 328, 2014.
  • [59] L. Navarro, A. D. Garcia, C. Solé, A. Castelland and L. F. Cabeza, “Thermal loads inside buildings with phase change materials: experimental results,” Energy Procedia, vol. 30, pp. 342 – 349, 2012.
  • [60] N. Hanchi, H. Hamza, J. Lahjomri and A. Oubarra,“Thermal behavior in dynamic regime of a multilayer roof provided with two phase change materials in the case of a local conditioned,” Energy Procedia, vol. 139, pp. 92–97, 2017.
  • [61] V. D. Cao, S. Pilehvar, C. Salas-Bringas, A. M. Szczotok, J. F. Rodriguez, M. Carmona, N. Al-Manasir and A. L. Kjøniksen, “Microencapsulated phase change materials for enhancing the thermal performance of portland cement concrete and geopolymer concrete for passive building applications,” Energy Conversion and Management, vol. 133, pp. 56–66, 2017.
  • [62] A. L. Pisello, V. L. Castaldo and F. Cotana, “Dynamic thermal-energy performance analysis of a prototype building with integrated phase change materials,” Energy Procedia, vol. 81, pp. 82-88, 2015.
  • [63] Binalarda ısı yalıtım kuralları, Türk Standartlar Enstitüsü TS825, 2010.
  • [64] Design Builder, Bilgisayar Programı, v6.1.8.021 versiyon, Gloucestershire (UK), DesignBuilder Software Limited, 2021.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Saylam Canım 0000-0002-0500-3337

Sibel Macka Kalfa 0000-0001-8064-9843

Yayımlanma Tarihi 30 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Saylam Canım, D., & Macka Kalfa, S. (2022). Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi. Duzce University Journal of Science and Technology, 10(2), 522-536. https://doi.org/10.29130/dubited.870517
AMA Saylam Canım D, Macka Kalfa S. Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi. DÜBİTED. Nisan 2022;10(2):522-536. doi:10.29130/dubited.870517
Chicago Saylam Canım, Deniz, ve Sibel Macka Kalfa. “Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology 10, sy. 2 (Nisan 2022): 522-36. https://doi.org/10.29130/dubited.870517.
EndNote Saylam Canım D, Macka Kalfa S (01 Nisan 2022) Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi. Duzce University Journal of Science and Technology 10 2 522–536.
IEEE D. Saylam Canım ve S. Macka Kalfa, “Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi”, DÜBİTED, c. 10, sy. 2, ss. 522–536, 2022, doi: 10.29130/dubited.870517.
ISNAD Saylam Canım, Deniz - Macka Kalfa, Sibel. “Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology 10/2 (Nisan 2022), 522-536. https://doi.org/10.29130/dubited.870517.
JAMA Saylam Canım D, Macka Kalfa S. Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi. DÜBİTED. 2022;10:522–536.
MLA Saylam Canım, Deniz ve Sibel Macka Kalfa. “Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology, c. 10, sy. 2, 2022, ss. 522-36, doi:10.29130/dubited.870517.
Vancouver Saylam Canım D, Macka Kalfa S. Havalandırmalı Duvar Konstrüksiyonlarında Faz Değiştiren Malzeme Kullanımının Konut Binalarının Enerji Yüklerine Etkisinin İncelenmesi. DÜBİTED. 2022;10(2):522-36.