Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu

Yıl 2022, Cilt: 10 Sayı: 2, 641 - 651, 30.04.2022
https://doi.org/10.29130/dubited.971025

Öz

Bu çalışmada 80x80x30 mm ebatlarında alüminyum 6061-T651 alaşımına yüzey frezeleme işlemleri gerçekleştirilerek kesme parametrelerinin kesici takım aşınması üzerine etkileri araştırılmıştır. Yüzey frezeleme işlemi için; üç farklı kaplamaya sahip kesici uç (CVD tekniği ile TiN-TiCN-Al2O3 kaplanmış, PVD tekniği ile TiALN-NANO kaplanmış ve PVD tekniği ile ALTiN kaplanmış) üç farklı kesme hızı (250, 350 ve 450 m/dak) ve üç farklı ilerleme oranı (0.15, 0.30 ve 0.45 mm/diş) kullanılmıştır. Deneyler kuru şartlarda yürütülüp kesme derinliği 0.5 mm olarak tüm deneylerde sabit tutulmuştur. Deneysel tasarım ve optimizasyon için Taguchi metodu kullanılmış, Taguchi L9 (33) ortogonal dizisi seçilerek 9 deney yürütülmüştür. Her bir deney sonrası takım yan yüzey aşınmaları ölçülmüştür. Deneyler sonunda elde edilen değerler optimize edilmiş, varyans analizi (ANOVA), üç boyutlu grafikler ve regresyon metodu kullanılarak değerlendirilmiştir. Deneyler sonrası en düşük takım aşınması için kesme parametreleri, Taguchi metoduyla başarılı bir şekilde optimize edilmiştir. Taguchi analizi sonucu minimum aşınma değeri için elde edilen optimum kesme şartları; TiN-TiCN-Al2O3 kaplamalı kesici uç, 450 m/dak kesme hızı ve 0.30 mm/diş ilerleme oranı olarak bulunmuştur. 

Destekleyen Kurum

Düzce Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2019.06.06.910

Teşekkür

Bu çalışma Düzce Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir. (Proje numarası: 2019.06.06.910).

Kaynakça

  • [1] J. Hirsch, B. Skrotzki, and G. Gottstein, Aluminium Alloys, Their Physical and Mechanical Properties, Germany: WILEY-VCH Verlag GmbH&Co. KGaA, 2008, pp. 2286.
  • [2] J. Kechagias, C. K. Ziogas, M. Pappas and I. Ntziatzias, “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, 2011, pp. 1.
  • [3] J. Kechagıas, G. Petropoulos, V. Iakovakis and S. Maropoulos, “An investigation of surface texture parameters during turning of a reinforced polymer composite using design of experiments and analysis”, Int. J. Experimental Design and Process Optimisation, vol. 1, no. 2/3, pp. 164–177, 2009.
  • [4] A. R. Meyers and T. J. Slattery, Basic Machining Reference Handbook, New York: Industrial Press, 2001.
  • [5] Y. Chen, Y. Yang, Z. Feng, B. Huang, and X. Luo, “Surface gradient nanostructures in high speed machined 7055 aluminum alloy”, Journal of Alloys and Compounds, vol. 726, pp. 367-377, 2017. [6] D. Vakondios, P. Kyratsis, S. Yaldız and A. Antoniadis, “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, vol. 45, pp. 1480-1488, 2012.
  • [7] B. Rao and Y.C. Shin, “Analysis on hidh – speed face-milling of 70075-T6 aluminum using carbide and diamond cutters”, International J. of Machine Tools and Manufacture, vol. 41, pp. 1763-1781, 2001.
  • [8] Taber (2022, April 8), 6000 Series Aluminum Alloys [Online]. Available: http://www.taberextrusions.com
  • [9] R. A. Gonçalves and M.B. Da Silva, “Influence of Copper Content on 6351 Aluminum Alloy Machinability”, Procedia Manufacturing, vol. 1, pp. 683-695, 2015.
  • [10] D. J. Lloyd, “Some aspects of the metallurgy of automotive al alloys”, Materials Forum, vol. 4, no. 28, pp. 107-117, 2004.
  • [11] G. Campatelli and A. Scippa, “Prediction of milling force coefficients for aluminum 6082-T4”, Procedia CIRP I, pp. 563-568, 2012.
  • [12] S.F. Dimin , T.J.S. Anand, R. Jamli and A. Kamely, “Surface quality investigation of Al 6061-T6511 using TiALN soated milling tool”, İnternational Journal of Basic & Applied Sciences IJBAS-IJENS, vol. 10, no. 4, pp. 55-59, 2010.
  • [13] B. Rahmati, A.A.D. Sarhan and M. Sayuti, “Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2 ) nano lubrication in end milling machining”, Journal of Cleaner Production, vol. 66, pp. 685-691, 2014.
  • [14] M. Sayuti, O.M. Erh, A.A.D. Sarhan and M. Hamdi, “Investigation on the morphology of the surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nano lubrication system”, Journal of Cleaner Production, vol. 66, pp. 655-663, 2014.
  • [15] M.S. Sukumar, P.V. Ramaıah and A. Nagarjuna, “Optimization and Prediction of Parameters in Face Milling of Al-6061 Using Taguchi and ANN Approach”, Procedia Engineering, vol. 97, pp. 365–371, 2014.
  • [16] M.Y. Tsai, S.Y. Chang, J.P. Hung and C.C. Wang, “Investigation of milling cutting forces and cutting coefficient for aluminum 6060-T6”, Computers and Electrical Engineering, pp. 1-11, 2015.
  • [17] K. Singh, A.K. Singh and K.D. Chattopadhyay, “Effect of machining parameters and MQL parameter on material removal rate in milling of Aluminium alloy”, Advances in Production and Industrial Engineering, pp. 359-368, 2020.
  • [18] D: Nathan, D. Elilraja, T. Prabhuram and S.P. Singh, “Experimental investigation of surface roughness in end milling of AA6061 alloy with flooded cooling and minimum quantity lubrication (MQL) technique”, Trends in Manufacturing and Engineering Management, pp. 649-659, 2020.
  • [19] A.M. Pınar, S. Filiz and B.S. Ünlü, “A comparison of cooling methods in the pocket milling of AA5083-H36 alloy via Taguchi method”, Int. J. Adv. Manuf. Technol, vol. 83, pp. 1431-1440, 2016.
  • [20] C. Martini and A. Morri, “Face milling of the EN-AB-43300 aluminum alloy by PVD and CVD coated cemented carbide inserts”, Int. Journal of Refractory Metals and Hard Materials, vol. 29, pp. 662-673, 2011.
  • [21] M.K. Dikshit, A.B. Puri and A. Maity, “Experimental study of cutting forces in ball end milling of Al2014-T6 using response surface methodology”, Procedia Materials Science, vol. 6, pp. 612-622, 2014.
  • [22] Davim J. P., Machinability of Advanced Materials, England: John Wiley&Sons, 2014.
  • [23] İ. Demirayak, “Kesme parametreleri, ve kaplama tabakasının talaş kaldırma işlemine etkileri,” Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, Uludağ Üniversitesi Bursa, Türkiye, 2006.
  • [24] Surftech (2021, July 12), TiALN futura nano coating brochures, Surface Technology Coatings, Suttontools, [Online]. Available: http://www.surftech.com.au
  • [25] S. Korucu, “The effects of sharpened tools on tool flank wear-surface roughnes and optimization of cutting parameters in milling Vanadis 4E powder metallurjic tool steel”, Sādhanā, vol. 45, no. 137, pp. 1-13, 2020.
  • [26] F. Kara, “Optimization of surface roughness in finish milling of AISI P20 + S plastic-mold steel”, Mater. Tehnol. Mater. Technol. vol. 52, no. 2, pp. 195–200, 2018.
  • [27] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, vol. 5, pp. 19–28, 2014.

Optimization of Cutting Tool Wear When Milling 6061-T651 Aluminum Alloy with Coated Inserts

Yıl 2022, Cilt: 10 Sayı: 2, 641 - 651, 30.04.2022
https://doi.org/10.29130/dubited.971025

Öz

In this study, the effects of cutting parameters on cutting tool wear were investigated by performing surface milling on 80x80x30 mm 6061-T651 aluminum alloy. Inserts with three different coatings (TiN-TiCN-Al2O3 coated by CVD technique, TiALN-NANO coated by PVD technique, and ALTiN coated by PVD technique), three different cutting speeds (250, 350, and 450 m/min), and three different feed rates (0.15, 0.30, and 0.45 mm/tooth) were used for the face milling process. The experiments were conducted in a dry setting and the depth of cut was kept constant at 0.5 mm in all experiments. The Taguchi method was used for the design and optimization of the experiments; Taguchi L9 (33) orthogonal array was selected and 9 experiments were conducted. Tool flank wear was measured after each run. The obtained results were optimized and evaluated using variance analysis (ANOVA), 3-D graphs, and regression method. After the measurements, cutting parameters were optimized successfully using the Taguchi method to achieve minimum tool wear. As a result of the Taguchi analysis, the optimum cutting conditions obtained for minimum wear value were determined as the TiN-TiCN-Al2O3 coated insert, 450 m/min cutting speed, and 0.30 mm/tooth feed rate. 

Proje Numarası

2019.06.06.910

Kaynakça

  • [1] J. Hirsch, B. Skrotzki, and G. Gottstein, Aluminium Alloys, Their Physical and Mechanical Properties, Germany: WILEY-VCH Verlag GmbH&Co. KGaA, 2008, pp. 2286.
  • [2] J. Kechagias, C. K. Ziogas, M. Pappas and I. Ntziatzias, “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, 2011, pp. 1.
  • [3] J. Kechagıas, G. Petropoulos, V. Iakovakis and S. Maropoulos, “An investigation of surface texture parameters during turning of a reinforced polymer composite using design of experiments and analysis”, Int. J. Experimental Design and Process Optimisation, vol. 1, no. 2/3, pp. 164–177, 2009.
  • [4] A. R. Meyers and T. J. Slattery, Basic Machining Reference Handbook, New York: Industrial Press, 2001.
  • [5] Y. Chen, Y. Yang, Z. Feng, B. Huang, and X. Luo, “Surface gradient nanostructures in high speed machined 7055 aluminum alloy”, Journal of Alloys and Compounds, vol. 726, pp. 367-377, 2017. [6] D. Vakondios, P. Kyratsis, S. Yaldız and A. Antoniadis, “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, vol. 45, pp. 1480-1488, 2012.
  • [7] B. Rao and Y.C. Shin, “Analysis on hidh – speed face-milling of 70075-T6 aluminum using carbide and diamond cutters”, International J. of Machine Tools and Manufacture, vol. 41, pp. 1763-1781, 2001.
  • [8] Taber (2022, April 8), 6000 Series Aluminum Alloys [Online]. Available: http://www.taberextrusions.com
  • [9] R. A. Gonçalves and M.B. Da Silva, “Influence of Copper Content on 6351 Aluminum Alloy Machinability”, Procedia Manufacturing, vol. 1, pp. 683-695, 2015.
  • [10] D. J. Lloyd, “Some aspects of the metallurgy of automotive al alloys”, Materials Forum, vol. 4, no. 28, pp. 107-117, 2004.
  • [11] G. Campatelli and A. Scippa, “Prediction of milling force coefficients for aluminum 6082-T4”, Procedia CIRP I, pp. 563-568, 2012.
  • [12] S.F. Dimin , T.J.S. Anand, R. Jamli and A. Kamely, “Surface quality investigation of Al 6061-T6511 using TiALN soated milling tool”, İnternational Journal of Basic & Applied Sciences IJBAS-IJENS, vol. 10, no. 4, pp. 55-59, 2010.
  • [13] B. Rahmati, A.A.D. Sarhan and M. Sayuti, “Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2 ) nano lubrication in end milling machining”, Journal of Cleaner Production, vol. 66, pp. 685-691, 2014.
  • [14] M. Sayuti, O.M. Erh, A.A.D. Sarhan and M. Hamdi, “Investigation on the morphology of the surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nano lubrication system”, Journal of Cleaner Production, vol. 66, pp. 655-663, 2014.
  • [15] M.S. Sukumar, P.V. Ramaıah and A. Nagarjuna, “Optimization and Prediction of Parameters in Face Milling of Al-6061 Using Taguchi and ANN Approach”, Procedia Engineering, vol. 97, pp. 365–371, 2014.
  • [16] M.Y. Tsai, S.Y. Chang, J.P. Hung and C.C. Wang, “Investigation of milling cutting forces and cutting coefficient for aluminum 6060-T6”, Computers and Electrical Engineering, pp. 1-11, 2015.
  • [17] K. Singh, A.K. Singh and K.D. Chattopadhyay, “Effect of machining parameters and MQL parameter on material removal rate in milling of Aluminium alloy”, Advances in Production and Industrial Engineering, pp. 359-368, 2020.
  • [18] D: Nathan, D. Elilraja, T. Prabhuram and S.P. Singh, “Experimental investigation of surface roughness in end milling of AA6061 alloy with flooded cooling and minimum quantity lubrication (MQL) technique”, Trends in Manufacturing and Engineering Management, pp. 649-659, 2020.
  • [19] A.M. Pınar, S. Filiz and B.S. Ünlü, “A comparison of cooling methods in the pocket milling of AA5083-H36 alloy via Taguchi method”, Int. J. Adv. Manuf. Technol, vol. 83, pp. 1431-1440, 2016.
  • [20] C. Martini and A. Morri, “Face milling of the EN-AB-43300 aluminum alloy by PVD and CVD coated cemented carbide inserts”, Int. Journal of Refractory Metals and Hard Materials, vol. 29, pp. 662-673, 2011.
  • [21] M.K. Dikshit, A.B. Puri and A. Maity, “Experimental study of cutting forces in ball end milling of Al2014-T6 using response surface methodology”, Procedia Materials Science, vol. 6, pp. 612-622, 2014.
  • [22] Davim J. P., Machinability of Advanced Materials, England: John Wiley&Sons, 2014.
  • [23] İ. Demirayak, “Kesme parametreleri, ve kaplama tabakasının talaş kaldırma işlemine etkileri,” Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, Uludağ Üniversitesi Bursa, Türkiye, 2006.
  • [24] Surftech (2021, July 12), TiALN futura nano coating brochures, Surface Technology Coatings, Suttontools, [Online]. Available: http://www.surftech.com.au
  • [25] S. Korucu, “The effects of sharpened tools on tool flank wear-surface roughnes and optimization of cutting parameters in milling Vanadis 4E powder metallurjic tool steel”, Sādhanā, vol. 45, no. 137, pp. 1-13, 2020.
  • [26] F. Kara, “Optimization of surface roughness in finish milling of AISI P20 + S plastic-mold steel”, Mater. Tehnol. Mater. Technol. vol. 52, no. 2, pp. 195–200, 2018.
  • [27] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, vol. 5, pp. 19–28, 2014.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berat Serhat Bektaş 0000-0003-0124-6179

Gürcan Samtaş 0000-0002-4111-7059

Proje Numarası 2019.06.06.910
Yayımlanma Tarihi 30 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Bektaş, B. S., & Samtaş, G. (2022). Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu. Duzce University Journal of Science and Technology, 10(2), 641-651. https://doi.org/10.29130/dubited.971025
AMA Bektaş BS, Samtaş G. Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu. DÜBİTED. Nisan 2022;10(2):641-651. doi:10.29130/dubited.971025
Chicago Bektaş, Berat Serhat, ve Gürcan Samtaş. “Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu”. Duzce University Journal of Science and Technology 10, sy. 2 (Nisan 2022): 641-51. https://doi.org/10.29130/dubited.971025.
EndNote Bektaş BS, Samtaş G (01 Nisan 2022) Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu. Duzce University Journal of Science and Technology 10 2 641–651.
IEEE B. S. Bektaş ve G. Samtaş, “Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu”, DÜBİTED, c. 10, sy. 2, ss. 641–651, 2022, doi: 10.29130/dubited.971025.
ISNAD Bektaş, Berat Serhat - Samtaş, Gürcan. “Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu”. Duzce University Journal of Science and Technology 10/2 (Nisan 2022), 641-651. https://doi.org/10.29130/dubited.971025.
JAMA Bektaş BS, Samtaş G. Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu. DÜBİTED. 2022;10:641–651.
MLA Bektaş, Berat Serhat ve Gürcan Samtaş. “Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu”. Duzce University Journal of Science and Technology, c. 10, sy. 2, 2022, ss. 641-5, doi:10.29130/dubited.971025.
Vancouver Bektaş BS, Samtaş G. Alüminyum 6061-T651 Alaşımının Kaplamalı Kesici Uçlarla Frezelenmesinde Kesici Takım Aşınmasının Optimizasyonu. DÜBİTED. 2022;10(2):641-5.