Araştırma Makalesi
BibTex RIS Kaynak Göster

Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini

Yıl 2022, Cilt: 10 Sayı: 3, 1263 - 1286, 31.07.2022
https://doi.org/10.29130/dubited.1003867

Öz

Bu çalışmada, çeşitli hastalık türlerine sahip hastalarda miktarının arttığı tespit edilen ve kanser biyobelirteci olarak kabul edilmiş bir sitokin türü olan İnterlökin 6 (IL-6)’nın tayini için moleküler baskılanmış aşırı oksitlenmiş polipirol (MIP(o-ppy)) ve altın nanoparçacık-peptit nanotüp (GNP-PNT) ile fonksiyonelleştirilmiş tek kullanımlık elektrot sistemi geliştirildi. Hem modifiye edici ajan hem de elektrot yüzeyi çeşitli yöntemlerle karakterize edildi. Moleküler baskılanmış elektrotlar ile IL-6’nın nicel analizi redoks çiftinin elektrokimyasal davranışı değişimi üzerinden voltametrik olarak gerçekleştirildi. Diferansiyel puls voltametri (DPV) tekniği kullanılarak doğrusal çalışma aralığı 1-200 pg/mL ve gözlenebilme sınırı (LOD) ise 0,2 pg/mL olarak bulundu. Önerilen çalışma kapsamında, düşük maliyetli, uzmanlık gerektirmeyen, kullanımı kolay, yüksek hassasiyetle ölçüm ve analiz yapan, hızlı cevap süresine sahip moleküler baskılanmış tek kullanımlık elektrotlar ileride hasta başı ölçümlerine uyarlanabilme potansiyeline sahiptir. 

Destekleyen Kurum

Hacettepe Üniversitesi

Proje Numarası

FÇP-2019-18214

Teşekkür

Bu çalışma Hacettepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından (FÇP-2019-18214) desteklenmiştir. Yazar ayrıca, faydalı yorumları için Dr. Gülçin Bolat ve Dr. Öznur Akbal Vural’a teşekkür eder.

Kaynakça

  • [1]P. Zarogoulidis, L. Yarmus, K. Darwiche, R. Walter, H. Huang, Z. Li, B. Zaric, K. Tsakiridis and K. Zarogoulidis, “Interleukin-6 cytokine: A multifunctional glycoprotein for cancer, ” Immunome Research, vol. 9, no. 1, pp. 1–11, 2013.
  • [2]J. Scheller and S. Rose-John, “Interleukin-6 and its receptor: From bench to bedside,” Medical Microbiology Immunology, vol. 195, pp. 173–183, 2006.
  • [3]Y. Guo, F. Xu, T. Lu, Z. Duan and Z. Zhang, “Interleukin-6 signaling pathway in targeted therapy for cancer, ” Cancer Treatment Reviews, vol. 38, no. 7, pp. 904–910, 2012.
  • [4]T. Li and M. Yang, “Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, ” Sensors and Actuators B: Chemical, vol. 158, no. 1, pp. 361–365, 2011.
  • [5]J. Peng, L.-N. Feng, Z.-J. Ren, L.-P. Jiang and J.-J. Zhu, “Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6, ” Small, vol. 7, no. 20, pp. 2921–2928, 2011.
  • [6]G. Cizza, A.H. Marques, F. Eskandari, I.C. Christie, S. Torvik, M.N. Silverman, T.M. Phillips and E.M. Sternberg, “Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER study, ” Biological Psychiatry, vol. 64, no. 10, pp. 907–91, 2008.
  • [7]M. Tertiş, B. Ciui, M. Suciu, R. Săndulescu, and C. Cristea, “Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection, ” Electrochimical Acta, vol. 258, pp. 1208–1218, 2017.
  • [8]H. Wu, Q. Huo, S. Varnum, J. Wang, G. Liu, Z. Nie, J. Liu and Y. Lin, “Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers, ” Analyst, vol. 133, pp. 1550–1555, 2008.
  • [9]S.M. Hanash, S.J. Pitteri and V.M. Faca, “Mining the plasma proteome for cancer biomarkers, ” Nature, vol. 452, no. 3, pp. 571–579, 2008.
  • [10]R. Malhotra, V. Patel, J. P. Vaque, J.S. Gutkind and J. F. Rusling “Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification,” Analytical Chemistry, vol. 82, pp. 3118–3123, 2010.
  • [11]Y. Lou, T. He, F. Jiang, J.J. Shi and J.J. Zhu, “A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels, ” Talanta, vol. 122, pp. 135–139, 2014.
  • [12]P. Chen, M.T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T.T. Cornell, T.P. Shanley and K. Kurabayashi, “Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays, ” ACS Nano, vol. 9, no. 4, pp. 4173–418, 2015.
  • [13]M. Toma and K. Tawa, “Polydopamine thin films as protein linker layer for sensitive detection of Interleukin-6 by surface plasmon enhanced fluorescence spectroscopy, ” ACS Applied Materials and Interfaces, vol. 8, pp. 22032–22038, 2016.
  • [14]A.M. Hawkridge and D.C. Muddiman, “Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality, ” Annual Review of Analytical Chemistry, vol. 2, no.1, pp. 265–277, 2009.
  • [15]L.S.S. Kumar, X. Wang, J. Hagen, R. Naik, I. Papautsky and J. Heikenfeld, “Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat, ” Analytical Methods, vol. 8, pp. 3440–3444, 2016.
  • [16]J.J. Shi, T.T. He, F. Jiang, E.S. Abdel-Halim and J.J. Zhu, “Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6, ” Biosensors and Bioelectronics, vol. 55, pp. 51–56, 2014.
  • [17]C. Russell, A.C. Ward, V. Vezza, P. Hoskisson, D. Alcorn, D.P. Steenson and D.K. Corrigan, “Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time, ” Biosensors and Bioelectronics, vol. 126, pp. 806–814, 2019.
  • [18]I. Ojeda, M. Moreno-Guzmán, A. González-Cortés, P. Yáñez-Sedeño and J.M. Pingarrón, “Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification, ” Analytical and Bioanalaytical Chemistry, vol. 406, pp. 6363–6370, 2014.
  • [19]J. Peng, L.N. Feng, Z.J. Ren, L.P. Jiang and J.J. Zhu, “Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6, ” Small, vol. 7, no. 20, pp. 2921–2928, 2011.
  • [20]T. Li and M. Yang, “Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, ” Sensors and Actuators B: Chemical, vol. 158, no.1, pp. 361–365, 2011.
  • [21]M. Tertis, P.I. Leva, D. Bogdan, M. Suciu, F. Graur and C. Cristea, “Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening, ” Biosensors and Bioelectronics, vol. 137, pp. 123–132, 2019.
  • [22]G. Bolat, Y.T. Yaman and S. Abaci, “Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination, ” Sensors and Actuators B: Chemical, vol. 299, pp. 127000, 2019.
  • [23]L. Özcan and Y. Şahin, “Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode, ” Sensors and Actuators B: Chemical, vol. 127, pp. 362–369, 2007.
  • [24]A.A. Lahcen and A. Amine, “Recent Advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials,” Electroanalysis, vol. 31, pp. 188–201, 2019.
  • [25]F. Tan, L. Cong, X. Li, Q. Zhao, H. Zhao, X. Quan and J. Chen, “An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples, ” Sensors and Actuators B: Chemical, vol. 233, pp. 599–606, 2016.
  • [26]A. Nezhadali, L. Mehri and R. Shadmehri, “Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor, ” Materials Science and Engineering C, vol. 85, pp. 225–232, 2018.
  • [27] J. Xu, Y. Zhang, K. Wu, L. Zhang, S. Ge and J. Yu, “A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate, ” Microchimica Acta, vol. 184, pp. 1959–1967, 2017.
  • [28]H. Shiigi, H. Yakabe, M. Kishimoto, D. Kijima, Y. Zhang, U. Sree, B.A. Deore and T. Nagaoka, “Molecularly imprinted overoxidized polypyrrole colloids: Promising materials for molecular recognition, ” Microchimica Acta, vol. 143, pp. 155–162, 2003.
  • [29]E. Mathieu-Scheers, S. Bouden, C. Grillot, J. Nicolle, F. Warmont, V. Bertagna, B. Cagnon and C. Vautrin-Ul, “Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode, ” Journal of Electroanalytical Chemistry, vol. 848, pp. 113253, 2019.
  • [30]X.F. Zhao, F.F. Duan, P.P. Cui, Y.Z. Yang, X.G. Liu and X.L. Hou, “A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin, ” New Carbon Materials, vol. 33, no.6, pp. 529–543, 2018.
  • [31]S. Sun, M. Zhang, Y. Li and X. He, “A molecularly imprinted polymer with incorporated Graphene oxide for electrochemical determination of quercetin, ” Sensors, vol. 13, no.5, pp. 5493–5506, 2013.
  • [32]F. Wang, L. Zhu and J. Zhang, “Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode, ” Sensors and Actuators: B Chemical, vol. 192 pp. 42–647, 2014.
  • [33]L. Devkota, L.T. Nguyen, T.T. Vu and B. Piro, “Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface,” Electrochimica Acta, vol. 270 pp. 535–542, 2018.
  • [34]A. Turco, S. Corvaglia, P.P. Pompa and C. Malitesta, “An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis, ” Journal of Colloid Interface Science, vol. 599, pp. 676–685, 2021.
  • [35]G. Chen, G. Wu, L. Wang, S. Zhang and Z. Su, “Layer-by-layer assembly of single-charged ions with a rigid polyampholyte,” Chemical Communications, pp. 1741–3, 2008.
  • [36]A. Vakurov, C.E. Simpson, C.L. Daly, T.D. Gibson and P.A. Millner, “Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase,” Biosensors and Bioelectronics, vol. 20, pp. 2324–9, 2005. [37]A. Lakshmanan, S. Zhang and C.A.E. Hauser, “Short self-assembling peptides as building blocks for modern nanodevices,” Trends Biotechnology, vol. 30, pp. 155–165, 2012.
  • [38]J. Castillo-león, K.B. Andersen and W.E. Svendsen, “Self – Assembled peptide nanostructures for biomedical applications : Advantages and challenges”, in Biomaterials Science and Engineering, Chapter 5, InTech, 2011 pp. 115-138.
  • [39]J.J. Castillo, W.E. Svendsen, N. Rozlosnik, P. Escobar, F. Martínez and J. Castillo-León, “Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode,” Analyst, vol. 138, pp. 1026–1031, 2013.
  • [40]M. Yemini, M. Reches, J. Rishpon and E. Gazit, “Novel electrochemical biosensing platform using self-assembled peptide nanotubes, ” Nano Letters, vol. 5, pp. 183–186, 2005.
  • [41]M. Yemini, M. Reches, E. Gazit, J. Rishpon and T. Aviv, “Peptide nanotube-modified electrodes for enzyme - biosensor applications,” Analytical Chemistry, vol. 77, pp. 5155–5159, 2005.
  • [42]E. Chan, J. Choi, M. Lee and K. Koo, “Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes,” Colloids Surfaces A, vol. 314, pp. 95–99, 2008.
  • [43]G. Jiang, L. Wang and W. Chen, “Studies on the preparation and characterization of gold nanoparticles protected by dendrons,” Materials Letters, vol. 61, no.1, pp. 278–283, 2007.
  • [44]T. Vural, Y.T. Yaman, S. Ozturk, S. Abaci and E.B. Denkbas, “Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode,” Journal of Colloid and Interface Science, vol. 510, pp. 318–326, 2018.
  • [45]Y.T. Yaman, O.A. Vural, G. Bolat and S. Abaci, “One-pot synthesized gold nanoparticle-peptide nanotube modified disposable sensor for impedimetric recognition of miRNA 410,” Sensors and Actuators B: Chemical, vol. 320, pp. 128343, 2020.
  • [46]S. Almohammed, S. Fedele, B.J. Rodriguez and J.H. Rice, “Aligned diphenylalanine nanotube–silver nanoparticle templates for high-sensitivity surface-enhanced Raman scattering, ” Journal of Raman Spectroscopy, vol. 48, no.12, pp. 1799–1807, 2017.
  • [47]W. Haiss, N.T.K. Thanh, J. Aveyard and D.G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV - Vis Spectra, ” Analytical Chemistry, vol. 79, pp. 4215–4221, 2007.
  • [48]S.M. Acuña, M.C. Veloso and P.G. Toledo, “Self-Assembly of Diphenylalanine-Based Nanostructures in Water and Electrolyte Solutions, ” Journal of Nanomaterials, vol. 2018, pp. 1–7, 2018.
  • [49]G.R. Dhanasekar, Naresh Niranjan Rahul, G. Kannan, Badri Narayanan Raman, and N. Sakthivel, “Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp., ” Journal of Microbiological Biotechnology, vol. 25, pp. 1129–1135, 2015.
  • [50]N. Ermiş and N. Tinkiliç, “Preparation of molecularly imprinted polypyrrole modified gold electrode for determination of tyrosine in biological samples, ” International Journal of Electrochemical Science, vol. 13, pp. 2286–2298, 2018.
  • [51]Z.O. Uygun and Y. Dilgin, “A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos, ” Sensors Actuators B: Chemical, vol. 188, pp. 78–84, 2013.
  • [52]C. Johne, R. Fritzsch and A. Ignaszak, “Three-Dimensionally Ordered Polypyrrole Electrode: Electrochemical Study on Capacity and Degradation Process, ” Electroanalysis, vol. 26 pp. 1560–1572, 2014.
  • [53]S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal and A. Jabbari, “A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A,” Microchimica Acta, vol. 183, pp. 1933–1941, 2016.
  • [54]X. Wei, X. Xu, W. Qi, Y. Wu and L. Wang, “Molecularly imprinted polymer/graphene oxide modified glassy carbon electrode for selective detection of sulfanilamide,” Prog. Nat. Sci. Mater. Int., vol. 27, pp. 374–379, 2017.
  • [55]D. Tonelli, B. Ballarin, L. Guadagnini, A. Mignani and E. Scavetta, “A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole,” Electrochimica Acta, vol. 56, pp. 7149–7154, 2011.
  • [56]G. Zandomeneghi, M.R.H. Krebs, M.G. McCammon and M. Fändrich, “FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils,” Protein Science, vol. 13, pp. 3314–3321, 2009.
  • [57]N. Su, “Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes,” Nanoscale Research Letters, vol. 10, pp. 4–12, 2015.
  • [58]N. Su, H.B. Li, S.J. Yuan, S.P. Yi and E.Q. Yin, “Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes, ” Express Polymer Letters, vol. 6, no. 9, pp. 697–705, 2012.
  • [59]R.D. Munje, S. Muthukumar, B. Jagannath and S. Prasad, “A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs), ” Scientific Reports, vol. 7, pp. 1–12, 2017.
  • [60]Z. Sepehri, H. Bagheri, E. Ranjbari, M. Amiri-Aref, S. Amidi, M.R. Rouini and Y.H. Ardakani, “Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode, ” Ionics, vol. 24, pp. 1253–1263, 2018.
  • [61]N. Karimian, M. Vagin, M.H.A. Zavar, M. Chamsaz, A.P.F. Turner and A. Tiwari, “An ultrasensitive molecularly-imprinted human cardiac troponin sensor, ” Biosensors and Bioelectronics, vol. 50, pp. 492–498, 2013.
  • [62]R. Malhotra, V. Patel, J.P. Vaqué, J.S. Gutkind and J.F. Rusling, “Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification,” Analytical Chemistry, vol. 82, pp. 3118–3123, 2010.
  • [63]F. Esfandi, S. Mohammadzadeh Ghobadloo and G. Basati, “Interleukin-6 level in patients with colorectal cancer, ” Cancer Letters, vol. 244 pp. 76–78, 2006.
  • [64]J. Gong, X. Miao, H. Wan and D. Song, "Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor, ” Sensors and Actuators B: Chemical, vol. 162 pp. 341–347, 2012.
  • [65]J.N. Nirmala, A. Kumaravel and M. Chandrasekaran, “Stearic acid modified glassy carbon electrode for electrochemical sensing of parathion and methyl parathion,” Journal of Applied Electrochemistry, vol. 40, pp.1571–1574, 2010.
  • [66]H.L. Tcheumi, I.K. Tonle, E. Ngameni and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode, ” Talanta, vol. 81 pp. 972–979, 2010.
  • [67]X. Tian, L. Liu, Y. Li, C. Yang, Z. Zhou, Y. Nie and Y. Wang, “Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water,” Sensors and Actuators B: Chemical, vol. 256, pp. 135–142, 2018.
  • [68]L. Zhao, F. Zhao and B. Zeng, “Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode, ” Sensors and Actuators B: Chemical, vol. 176, pp. 818–824, 2013.
  • [69]N. Gao, C. He, M. Ma, Z. Cai, Y. Zhou, G. Chang, X. Wang and Y. He, “Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor, ” Analytica Chimica Acta, vol. 1072, pp. 25–34, 2019.
  • [70]Z. Wang, B. Ma, C. Shen and L.Z. Cheong, “Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor,” Talanta, vol. 197, pp. 356–362, 2019.
  • [71]G.H.S. Rodrigues, C.M. Miyazaki, R.J.G. Rubira, C.J.L. Constantino and M. Ferreira, “Layer-by-layer films of graphene nanoplatelets and gold nanoparticles for methyl parathion sensing, ” ACS Applied Nano Materials, vol. 2, pp. 1082–1091, 2019.
  • [72]J. Gong, L. Wang and L. Zhang, “Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite,” Biosensors and Bioelectronics, vol. 24, pp. 2285–2288, 2009.
  • [73]T.H.V. Kumar and A.K. Sundramoorthy, “Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites,” Analytica Chimica Acta, vol. 74, pp. 131–141, 2019.
  • [74]R. Xue, T.F. Kang, L.P. Lu and S.Y. Cheng, “Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides,” Applied Surface Science, vol. 258, pp. 6040–6045, 2012.

Detection of IL-6 with a Functionalized with Gold Nanoparticle-Peptide Nanotube Molecularly Imprinted Single-used Biochip

Yıl 2022, Cilt: 10 Sayı: 3, 1263 - 1286, 31.07.2022
https://doi.org/10.29130/dubited.1003867

Öz

In this study, molecularly imprinted over oxidized polypyrrole (MIP(o-ppy)) and functionalized with gold nanoparticle-peptide nanotube (GNP-PNT) single-used electrode system was developed for detection of Interleukin 6 (IL-6) which is a type of cytokine that has been found to be increased in patients with various disease types and has been accepted as a cancer biomarker. Both the modifying agent and the electrode surface were characterized by various methods. Quantitative analysis of IL-6 with molecularly imprinted electrodes was performed voltammetrically over the change in the electrochemical behavior of the redox couple. By using the differential pulse voltammetry (DPV) technique, the linear working range was achieved as 1-200 pg/mL and the limit of detection (LOD) was found as 0.2 pg/mL. Within the scope of the proposed study, molecularly imprinted disposable electrodes that do not require expertise, are easy to use, measure and analyze with high sensitivity, and have a fast response time have the potential to be adapted to point of care measurements in the future.

Proje Numarası

FÇP-2019-18214

Kaynakça

  • [1]P. Zarogoulidis, L. Yarmus, K. Darwiche, R. Walter, H. Huang, Z. Li, B. Zaric, K. Tsakiridis and K. Zarogoulidis, “Interleukin-6 cytokine: A multifunctional glycoprotein for cancer, ” Immunome Research, vol. 9, no. 1, pp. 1–11, 2013.
  • [2]J. Scheller and S. Rose-John, “Interleukin-6 and its receptor: From bench to bedside,” Medical Microbiology Immunology, vol. 195, pp. 173–183, 2006.
  • [3]Y. Guo, F. Xu, T. Lu, Z. Duan and Z. Zhang, “Interleukin-6 signaling pathway in targeted therapy for cancer, ” Cancer Treatment Reviews, vol. 38, no. 7, pp. 904–910, 2012.
  • [4]T. Li and M. Yang, “Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, ” Sensors and Actuators B: Chemical, vol. 158, no. 1, pp. 361–365, 2011.
  • [5]J. Peng, L.-N. Feng, Z.-J. Ren, L.-P. Jiang and J.-J. Zhu, “Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6, ” Small, vol. 7, no. 20, pp. 2921–2928, 2011.
  • [6]G. Cizza, A.H. Marques, F. Eskandari, I.C. Christie, S. Torvik, M.N. Silverman, T.M. Phillips and E.M. Sternberg, “Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER study, ” Biological Psychiatry, vol. 64, no. 10, pp. 907–91, 2008.
  • [7]M. Tertiş, B. Ciui, M. Suciu, R. Săndulescu, and C. Cristea, “Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection, ” Electrochimical Acta, vol. 258, pp. 1208–1218, 2017.
  • [8]H. Wu, Q. Huo, S. Varnum, J. Wang, G. Liu, Z. Nie, J. Liu and Y. Lin, “Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers, ” Analyst, vol. 133, pp. 1550–1555, 2008.
  • [9]S.M. Hanash, S.J. Pitteri and V.M. Faca, “Mining the plasma proteome for cancer biomarkers, ” Nature, vol. 452, no. 3, pp. 571–579, 2008.
  • [10]R. Malhotra, V. Patel, J. P. Vaque, J.S. Gutkind and J. F. Rusling “Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification,” Analytical Chemistry, vol. 82, pp. 3118–3123, 2010.
  • [11]Y. Lou, T. He, F. Jiang, J.J. Shi and J.J. Zhu, “A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels, ” Talanta, vol. 122, pp. 135–139, 2014.
  • [12]P. Chen, M.T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T.T. Cornell, T.P. Shanley and K. Kurabayashi, “Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays, ” ACS Nano, vol. 9, no. 4, pp. 4173–418, 2015.
  • [13]M. Toma and K. Tawa, “Polydopamine thin films as protein linker layer for sensitive detection of Interleukin-6 by surface plasmon enhanced fluorescence spectroscopy, ” ACS Applied Materials and Interfaces, vol. 8, pp. 22032–22038, 2016.
  • [14]A.M. Hawkridge and D.C. Muddiman, “Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality, ” Annual Review of Analytical Chemistry, vol. 2, no.1, pp. 265–277, 2009.
  • [15]L.S.S. Kumar, X. Wang, J. Hagen, R. Naik, I. Papautsky and J. Heikenfeld, “Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat, ” Analytical Methods, vol. 8, pp. 3440–3444, 2016.
  • [16]J.J. Shi, T.T. He, F. Jiang, E.S. Abdel-Halim and J.J. Zhu, “Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6, ” Biosensors and Bioelectronics, vol. 55, pp. 51–56, 2014.
  • [17]C. Russell, A.C. Ward, V. Vezza, P. Hoskisson, D. Alcorn, D.P. Steenson and D.K. Corrigan, “Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time, ” Biosensors and Bioelectronics, vol. 126, pp. 806–814, 2019.
  • [18]I. Ojeda, M. Moreno-Guzmán, A. González-Cortés, P. Yáñez-Sedeño and J.M. Pingarrón, “Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification, ” Analytical and Bioanalaytical Chemistry, vol. 406, pp. 6363–6370, 2014.
  • [19]J. Peng, L.N. Feng, Z.J. Ren, L.P. Jiang and J.J. Zhu, “Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6, ” Small, vol. 7, no. 20, pp. 2921–2928, 2011.
  • [20]T. Li and M. Yang, “Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, ” Sensors and Actuators B: Chemical, vol. 158, no.1, pp. 361–365, 2011.
  • [21]M. Tertis, P.I. Leva, D. Bogdan, M. Suciu, F. Graur and C. Cristea, “Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening, ” Biosensors and Bioelectronics, vol. 137, pp. 123–132, 2019.
  • [22]G. Bolat, Y.T. Yaman and S. Abaci, “Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination, ” Sensors and Actuators B: Chemical, vol. 299, pp. 127000, 2019.
  • [23]L. Özcan and Y. Şahin, “Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode, ” Sensors and Actuators B: Chemical, vol. 127, pp. 362–369, 2007.
  • [24]A.A. Lahcen and A. Amine, “Recent Advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials,” Electroanalysis, vol. 31, pp. 188–201, 2019.
  • [25]F. Tan, L. Cong, X. Li, Q. Zhao, H. Zhao, X. Quan and J. Chen, “An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples, ” Sensors and Actuators B: Chemical, vol. 233, pp. 599–606, 2016.
  • [26]A. Nezhadali, L. Mehri and R. Shadmehri, “Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor, ” Materials Science and Engineering C, vol. 85, pp. 225–232, 2018.
  • [27] J. Xu, Y. Zhang, K. Wu, L. Zhang, S. Ge and J. Yu, “A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate, ” Microchimica Acta, vol. 184, pp. 1959–1967, 2017.
  • [28]H. Shiigi, H. Yakabe, M. Kishimoto, D. Kijima, Y. Zhang, U. Sree, B.A. Deore and T. Nagaoka, “Molecularly imprinted overoxidized polypyrrole colloids: Promising materials for molecular recognition, ” Microchimica Acta, vol. 143, pp. 155–162, 2003.
  • [29]E. Mathieu-Scheers, S. Bouden, C. Grillot, J. Nicolle, F. Warmont, V. Bertagna, B. Cagnon and C. Vautrin-Ul, “Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode, ” Journal of Electroanalytical Chemistry, vol. 848, pp. 113253, 2019.
  • [30]X.F. Zhao, F.F. Duan, P.P. Cui, Y.Z. Yang, X.G. Liu and X.L. Hou, “A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin, ” New Carbon Materials, vol. 33, no.6, pp. 529–543, 2018.
  • [31]S. Sun, M. Zhang, Y. Li and X. He, “A molecularly imprinted polymer with incorporated Graphene oxide for electrochemical determination of quercetin, ” Sensors, vol. 13, no.5, pp. 5493–5506, 2013.
  • [32]F. Wang, L. Zhu and J. Zhang, “Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode, ” Sensors and Actuators: B Chemical, vol. 192 pp. 42–647, 2014.
  • [33]L. Devkota, L.T. Nguyen, T.T. Vu and B. Piro, “Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface,” Electrochimica Acta, vol. 270 pp. 535–542, 2018.
  • [34]A. Turco, S. Corvaglia, P.P. Pompa and C. Malitesta, “An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis, ” Journal of Colloid Interface Science, vol. 599, pp. 676–685, 2021.
  • [35]G. Chen, G. Wu, L. Wang, S. Zhang and Z. Su, “Layer-by-layer assembly of single-charged ions with a rigid polyampholyte,” Chemical Communications, pp. 1741–3, 2008.
  • [36]A. Vakurov, C.E. Simpson, C.L. Daly, T.D. Gibson and P.A. Millner, “Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase,” Biosensors and Bioelectronics, vol. 20, pp. 2324–9, 2005. [37]A. Lakshmanan, S. Zhang and C.A.E. Hauser, “Short self-assembling peptides as building blocks for modern nanodevices,” Trends Biotechnology, vol. 30, pp. 155–165, 2012.
  • [38]J. Castillo-león, K.B. Andersen and W.E. Svendsen, “Self – Assembled peptide nanostructures for biomedical applications : Advantages and challenges”, in Biomaterials Science and Engineering, Chapter 5, InTech, 2011 pp. 115-138.
  • [39]J.J. Castillo, W.E. Svendsen, N. Rozlosnik, P. Escobar, F. Martínez and J. Castillo-León, “Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode,” Analyst, vol. 138, pp. 1026–1031, 2013.
  • [40]M. Yemini, M. Reches, J. Rishpon and E. Gazit, “Novel electrochemical biosensing platform using self-assembled peptide nanotubes, ” Nano Letters, vol. 5, pp. 183–186, 2005.
  • [41]M. Yemini, M. Reches, E. Gazit, J. Rishpon and T. Aviv, “Peptide nanotube-modified electrodes for enzyme - biosensor applications,” Analytical Chemistry, vol. 77, pp. 5155–5159, 2005.
  • [42]E. Chan, J. Choi, M. Lee and K. Koo, “Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes,” Colloids Surfaces A, vol. 314, pp. 95–99, 2008.
  • [43]G. Jiang, L. Wang and W. Chen, “Studies on the preparation and characterization of gold nanoparticles protected by dendrons,” Materials Letters, vol. 61, no.1, pp. 278–283, 2007.
  • [44]T. Vural, Y.T. Yaman, S. Ozturk, S. Abaci and E.B. Denkbas, “Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode,” Journal of Colloid and Interface Science, vol. 510, pp. 318–326, 2018.
  • [45]Y.T. Yaman, O.A. Vural, G. Bolat and S. Abaci, “One-pot synthesized gold nanoparticle-peptide nanotube modified disposable sensor for impedimetric recognition of miRNA 410,” Sensors and Actuators B: Chemical, vol. 320, pp. 128343, 2020.
  • [46]S. Almohammed, S. Fedele, B.J. Rodriguez and J.H. Rice, “Aligned diphenylalanine nanotube–silver nanoparticle templates for high-sensitivity surface-enhanced Raman scattering, ” Journal of Raman Spectroscopy, vol. 48, no.12, pp. 1799–1807, 2017.
  • [47]W. Haiss, N.T.K. Thanh, J. Aveyard and D.G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV - Vis Spectra, ” Analytical Chemistry, vol. 79, pp. 4215–4221, 2007.
  • [48]S.M. Acuña, M.C. Veloso and P.G. Toledo, “Self-Assembly of Diphenylalanine-Based Nanostructures in Water and Electrolyte Solutions, ” Journal of Nanomaterials, vol. 2018, pp. 1–7, 2018.
  • [49]G.R. Dhanasekar, Naresh Niranjan Rahul, G. Kannan, Badri Narayanan Raman, and N. Sakthivel, “Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp., ” Journal of Microbiological Biotechnology, vol. 25, pp. 1129–1135, 2015.
  • [50]N. Ermiş and N. Tinkiliç, “Preparation of molecularly imprinted polypyrrole modified gold electrode for determination of tyrosine in biological samples, ” International Journal of Electrochemical Science, vol. 13, pp. 2286–2298, 2018.
  • [51]Z.O. Uygun and Y. Dilgin, “A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos, ” Sensors Actuators B: Chemical, vol. 188, pp. 78–84, 2013.
  • [52]C. Johne, R. Fritzsch and A. Ignaszak, “Three-Dimensionally Ordered Polypyrrole Electrode: Electrochemical Study on Capacity and Degradation Process, ” Electroanalysis, vol. 26 pp. 1560–1572, 2014.
  • [53]S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal and A. Jabbari, “A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A,” Microchimica Acta, vol. 183, pp. 1933–1941, 2016.
  • [54]X. Wei, X. Xu, W. Qi, Y. Wu and L. Wang, “Molecularly imprinted polymer/graphene oxide modified glassy carbon electrode for selective detection of sulfanilamide,” Prog. Nat. Sci. Mater. Int., vol. 27, pp. 374–379, 2017.
  • [55]D. Tonelli, B. Ballarin, L. Guadagnini, A. Mignani and E. Scavetta, “A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole,” Electrochimica Acta, vol. 56, pp. 7149–7154, 2011.
  • [56]G. Zandomeneghi, M.R.H. Krebs, M.G. McCammon and M. Fändrich, “FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils,” Protein Science, vol. 13, pp. 3314–3321, 2009.
  • [57]N. Su, “Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes,” Nanoscale Research Letters, vol. 10, pp. 4–12, 2015.
  • [58]N. Su, H.B. Li, S.J. Yuan, S.P. Yi and E.Q. Yin, “Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes, ” Express Polymer Letters, vol. 6, no. 9, pp. 697–705, 2012.
  • [59]R.D. Munje, S. Muthukumar, B. Jagannath and S. Prasad, “A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs), ” Scientific Reports, vol. 7, pp. 1–12, 2017.
  • [60]Z. Sepehri, H. Bagheri, E. Ranjbari, M. Amiri-Aref, S. Amidi, M.R. Rouini and Y.H. Ardakani, “Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode, ” Ionics, vol. 24, pp. 1253–1263, 2018.
  • [61]N. Karimian, M. Vagin, M.H.A. Zavar, M. Chamsaz, A.P.F. Turner and A. Tiwari, “An ultrasensitive molecularly-imprinted human cardiac troponin sensor, ” Biosensors and Bioelectronics, vol. 50, pp. 492–498, 2013.
  • [62]R. Malhotra, V. Patel, J.P. Vaqué, J.S. Gutkind and J.F. Rusling, “Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification,” Analytical Chemistry, vol. 82, pp. 3118–3123, 2010.
  • [63]F. Esfandi, S. Mohammadzadeh Ghobadloo and G. Basati, “Interleukin-6 level in patients with colorectal cancer, ” Cancer Letters, vol. 244 pp. 76–78, 2006.
  • [64]J. Gong, X. Miao, H. Wan and D. Song, "Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor, ” Sensors and Actuators B: Chemical, vol. 162 pp. 341–347, 2012.
  • [65]J.N. Nirmala, A. Kumaravel and M. Chandrasekaran, “Stearic acid modified glassy carbon electrode for electrochemical sensing of parathion and methyl parathion,” Journal of Applied Electrochemistry, vol. 40, pp.1571–1574, 2010.
  • [66]H.L. Tcheumi, I.K. Tonle, E. Ngameni and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode, ” Talanta, vol. 81 pp. 972–979, 2010.
  • [67]X. Tian, L. Liu, Y. Li, C. Yang, Z. Zhou, Y. Nie and Y. Wang, “Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water,” Sensors and Actuators B: Chemical, vol. 256, pp. 135–142, 2018.
  • [68]L. Zhao, F. Zhao and B. Zeng, “Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode, ” Sensors and Actuators B: Chemical, vol. 176, pp. 818–824, 2013.
  • [69]N. Gao, C. He, M. Ma, Z. Cai, Y. Zhou, G. Chang, X. Wang and Y. He, “Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor, ” Analytica Chimica Acta, vol. 1072, pp. 25–34, 2019.
  • [70]Z. Wang, B. Ma, C. Shen and L.Z. Cheong, “Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor,” Talanta, vol. 197, pp. 356–362, 2019.
  • [71]G.H.S. Rodrigues, C.M. Miyazaki, R.J.G. Rubira, C.J.L. Constantino and M. Ferreira, “Layer-by-layer films of graphene nanoplatelets and gold nanoparticles for methyl parathion sensing, ” ACS Applied Nano Materials, vol. 2, pp. 1082–1091, 2019.
  • [72]J. Gong, L. Wang and L. Zhang, “Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite,” Biosensors and Bioelectronics, vol. 24, pp. 2285–2288, 2009.
  • [73]T.H.V. Kumar and A.K. Sundramoorthy, “Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites,” Analytica Chimica Acta, vol. 74, pp. 131–141, 2019.
  • [74]R. Xue, T.F. Kang, L.P. Lu and S.Y. Cheng, “Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides,” Applied Surface Science, vol. 258, pp. 6040–6045, 2012.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yeşim Tuğçe Yaman 0000-0001-9693-6302

Serdar Abacı 0000-0003-2302-0779

Proje Numarası FÇP-2019-18214
Yayımlanma Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

APA Yaman, Y. T., & Abacı, S. (2022). Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini. Duzce University Journal of Science and Technology, 10(3), 1263-1286. https://doi.org/10.29130/dubited.1003867
AMA Yaman YT, Abacı S. Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini. DÜBİTED. Temmuz 2022;10(3):1263-1286. doi:10.29130/dubited.1003867
Chicago Yaman, Yeşim Tuğçe, ve Serdar Abacı. “Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp Ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip Ile IL-6 Tayini”. Duzce University Journal of Science and Technology 10, sy. 3 (Temmuz 2022): 1263-86. https://doi.org/10.29130/dubited.1003867.
EndNote Yaman YT, Abacı S (01 Temmuz 2022) Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini. Duzce University Journal of Science and Technology 10 3 1263–1286.
IEEE Y. T. Yaman ve S. Abacı, “Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini”, DÜBİTED, c. 10, sy. 3, ss. 1263–1286, 2022, doi: 10.29130/dubited.1003867.
ISNAD Yaman, Yeşim Tuğçe - Abacı, Serdar. “Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp Ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip Ile IL-6 Tayini”. Duzce University Journal of Science and Technology 10/3 (Temmuz 2022), 1263-1286. https://doi.org/10.29130/dubited.1003867.
JAMA Yaman YT, Abacı S. Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini. DÜBİTED. 2022;10:1263–1286.
MLA Yaman, Yeşim Tuğçe ve Serdar Abacı. “Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp Ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip Ile IL-6 Tayini”. Duzce University Journal of Science and Technology, c. 10, sy. 3, 2022, ss. 1263-86, doi:10.29130/dubited.1003867.
Vancouver Yaman YT, Abacı S. Moleküler Baskılanmış/Altın Nanoparçacık-Peptit Nanotüp ile Fonksiyonelleştirilmiş Tek Kullanımlık Biyoçip ile IL-6 Tayini. DÜBİTED. 2022;10(3):1263-86.