Araştırma Makalesi
BibTex RIS Kaynak Göster

Preconcentration of Copper Ions from Aqueous Solution using EDTA Modified Prunus Dulcis L. Peels and Determination by FAAS

Yıl 2022, Cilt: 10 Sayı: 3, 1476 - 1488, 31.07.2022
https://doi.org/10.29130/dubited.998329

Öz

In recent years, natural wastes such as cheap and abundant fruit and vegetable peels, which are called agricultural wastes, have been used as an effective biosorbent in the removal and preconcentration of metal ions due to the storage problems they cause in nature. In this study, Prunus Dulcis L. peels, a low-cost biosorbent as an agricultural waste, modified with ethylenedinitrilo tetra acetic acid (EDTA) were used for the preconcentration of copper ions from aqueous solutions and for the determination by atomic absorption spectrometry. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyzes were used for the characterization of the prepared biosorbent. As the preconcentration method, the solid phase extraction method was studied in the column system and parameters such as pH, eluent solution, column flow rate, sample volume were optimized. The mean recovery and relative standard deviation (RSD) values were found to be as 99.4±1.4% and 2.23% for Cu(II) ions. Langmuir and Freundlich isotherm graphs were drawn to determine the capacity of the biosorbent. The highest biosorbent capacity for copper ion was calculated as 34.60 mg g-1 for raw Prunus Dulcis L. peels and 42.19 mg g-1 for EDTA modified Prunus Dulcis L. peels from the Langmuir isotherm model.

Kaynakça

  • [1]S. Kuppusamy, P. Thavamani, M. Megharaj, K. Venkateswarlu, Y. B. Lee, R. Naidu, “Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents,” Water Air Soil Pollution, vol. 227, no. 62, pp. 1-11, 2016.
  • [2]N. E. Gümüş, B. Aşıkkutlu, H. B. Keskinkaya, C. Akköz, “Comparison of heavy metal absorption of some algae isolated from Altınapa Dam Lake (Konya),” Journal of Anatolian Environmental and Animal Sciences, no. 1, pp. 50-56, 2021.
  • [3]P. Liang, Q. Ding, F. Song, “Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples,” Journal of Separation Science, vol. 28, pp. 2339–2343, 2005.
  • [4]N. Ozkantar, E. Yilmaz, M. Soylak, M. Tuzen, “Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements,” Food Chemistry, vol. 321, pp. 126737, 2020.
  • [5]N. Al-Masoud, M. Habila, Z. A. ALOthman, T. S. S. Alomara, N. Alraqibah, M. Sheikh, A. A. Ghfar and M. Soylak, “Nano-clay as solid phase microextractor of copper, cadmium and lead for ultra-trace quantification by ICP-MS,” Analytical Methods, vol. 12, pp. 4949-4955, 2020.
  • [6]S. Kilic, M. Kilic and M. Soylak, “The determination of toxic metals in some traditional cosmetic products and health risk assessment,” Biological Trace Element Research, vol. 199, pp. 2272–2277, 2021.
  • [7]W. A Khan, M. B Arain and M. Soylak, “Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity,” Food and Chemical Toxicology, vol.145, pp. 111704, 2020.
  • [8]M. Tuzen, A. Elik, B. Hazer, S. Şimşek, N. Altunay, “Poly(styrene)-co-2-vinylpyridine copolymer as a novel solid-phase adsorbent for determination of manganese and zinc in foods and vegetables by FAAS,” Food Chemistry, vol. 333, pp. 127504, 2020.
  • [9]N. Altunay, B. Hazer, M. Tuzen, A. Elik, “A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent:Synthesis, characterization and application,” Food Chemistry, vol. 359, pp. 129923, 2021.
  • [10]Ö. Yalçınkaya, O. M. Kalfa, and A. R. Türker, “Chelating agent free-solid phase extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by new nano hybrid material (ZrO2/B2O3),”Journal of Hazardous Materials, vol. 195, pp. 332-339, 2011.
  • [11]M. Soylak, O. Ozalp and F. Uzcan, “Magnetic nanomaterials for the removal, separation and preconcentration of organic and inorganic pollutants at trace levels and their practical applications: A review,” Trends in Environmental Analytical Chemistry, vol. 29, pp. e00109, 2021.
  • [12]E. Ay, Z. Tekin, N. Özdoğan and S. Bakırdere, “Zirconium nanoparticles based vortex assisted ligandless dispersive solid phase extraction for trace determination of lead in domestic wastewater using flame atomic absorption spectrophotometry”, Bulletin of Environmental Contamination and Toxicology, 2021. https://doi.org/10.1007/s00128-021-03318-0.
  • [13]Y. Bulut and Z. Tez, “Adsorption studies on ground shells of hazelnut and almond,” Journal of Hazardous Material, vol. 149, pp. 35–41, 2007.
  • [14]E. Pehlivan, T. Altun, S. Cetin, M. I. Bhanger, “Lead sorption by waste biomass of hazelnut and almond shell,” Journal of Hazardous Material, vol. 167, pp. 1203–1208, 2009.
  • [15]A. Ronda, M. A. Martı´n-Lara, E. Dionisio, G. Blazquez, M. Calero, “Effect of lead in biosorption of copper by almond shell,” Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 466–473, 2013.
  • [16]N. N. Rudi, M. S. Muhamad, L. T. Chuan, J. Alipal, S. Omar, N. Hamidon, N. H. Abdul Hamid, N. M. Sunar, R. Ali, H. Harun, “Evolution of adsorption process for manganese removal in water via agricultural waste sorbents,” Heliyon, vol. 6, no. 9, pp. e05049, 2020.
  • [17]S. İnan and B. Ozkan, “Sorption of cobalt and nickel on narcissus tazetta l. leaf powder”, Journal of the Turkish Chemical Society Section A: Chemistry, vol. 8, no. 3, pp. 705–714, 2021.
  • [18]E. H. Gürkan, “Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması,” Niğde Ömer Halisdemir University Journal of Engineering Sciences, c. 10, s. 2, ss. 712-722, 2021.
  • [19]M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H. R. Kermani, “Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone,” Journal of Hazardous Material, vol. 150, pp. 322–327, 2008.
  • [20]H. Özkalkan and R. Saygili Canlidinç, “Investigation of the conditions for preconcentration of cadmium ions by solid phase extraction method using modified Juglans regia l. shells,” Journal of AOAC International, vol. 104, pp. 1246-1254, 2021.
  • [21]M. M. Kabir, S. S. P. Mouna, S. Akter, S. Khandaker, M. Didar-ul-Alam, N. M. Bahadur, “Tea waste based natural sorbent for toxic pollutant removal from waste samples,” Journal of Molecular Liquids, vol. 322, pp. 115012, 2021.
  • [22]P. N. Fotsing, N. Bouazizi, E. D. Woumfo, N. Mofaddel, F. Le Derf, J. Vieillard, “Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell sorbent,” Journal of Environmental Chemical Engineering, vol. 9, pp. 104618, 2021.
  • [23]B. Singha, S. K. Das, “Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes,” Colloids and Surfaces B: Biointerfaces, vol. 107, pp. 97–106, 2013.
  • [24]I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361-1403, 1918.
  • [25]H. M. F. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Physikalische Chemie vol. 57, pp. 385-470, 1906.
  • [26]A. H. El-Sheikh, J.A. Sweileh and M. I. Saleh. “Partially pyrolyzed olive pomace sorbent of high permeability for preconcentration of metals from environmental waters,” Journal of Hazardous Materials, vol. 169, no. 1-3, pp. 58–64, 2009.
  • [27]L. Pelit, F. N. Ertaş, A. E. Eroğlu, T. Shahwan, H. Tural, “Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk,” Bioresource Technology, vol. 102, no. 19, pp. 8807–8813, 2011.
  • [28]R. S. D. Castro, L. Caetano, G. Ferreira, P. M. Padilha, M. J. Saeki, L. F. Zara, M. A. U. Martines and G.R. Castro, “Banana peel applied to the solid phase extraction of copper and lead from river water: Preconcentration of metal ions with a fruit waste,” Industrial & Engineering Chemistry Research, vol. 50, pp. 3446–3451, 2011.
  • [29]A. O. Jorgetto, R. I. V. Silva, M. J. Saeki, R.C. Barbosa, M. A. U. Martines, S. M. A. Jorge, A. C. P. Silva, J. F. Schneider, G. R. Castro, “Cassava root husks powder as green adsorbent for the removal of Cu(II) from natural river water,” Applied Surface Science, vol. 288, pp. 356–362, 2014.
  • [30]A. C. P. Silva, A. O. Jorgetto, M. H. P. Wondracek, R. M. Galera, J. F. Schneider, M. J. Saeki, V. A. Pedrosa, L. F. Zara, G. R.Castro, “Properties, characteristics and application of grinded Malpighia emargiata seeds in the removal of toxic metals from water,” Groundwater for Sustainable Development, vol. 6, pp. 50-56, 2018.
  • [31]B. Topuz, F. Batmaz, O. Külköylüoğlu, Ç. Çapraz, “First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co(II), Cu(II) and Mn(II) trace metal ions,” Microchemical Journal, vol. 167, pp. 106335, 2021.
  • [32]Ş. Aslan, S. Yıldız, M. Öztürk, “Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik”, Pamukkale Universitesi Mühendislik Bilimleri Dergisi, c. 27, s. 3, ss. 359-367, 2021.
  • [33]A. Tunçeli, A. Ulaş, O. Acar, A. R. Türker, “Solid phase extraction of cadmium and lead from water by Amberlyst 15 and determination by flame atomic absorption spectrometry,” Bulletin of Environmental Contamination and Toxicology, vol. 102, pp. 297–302, 2019.
  • [34]R. A. Zounr, M. Tuzen, N. Deligonul, M. Y. Khuhawar, “A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry,” Food Chemistry, vol. 253 pp. 277–283, 2018.

EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini

Yıl 2022, Cilt: 10 Sayı: 3, 1476 - 1488, 31.07.2022
https://doi.org/10.29130/dubited.998329

Öz

Son yıllarda, tarımsal atık olarak adlandırılan, ucuz ve bol miktarda bulunan meyve ve sebze kabukları gibi doğal atıklar, doğada oluşturdukları depolanma sorunları nedeniyle, metal iyonlarının gideriminde ve zenginleştirilmesinde etkili bir biyosorbent olarak kullanılmaktadır. Bu çalışmada, tarımsal bir atık olarak, düşük maliyetli bir biyosorbent olan Prunus Dulcis L. kabukları, etilendinitril tetra asetik asit (EDTA) ile modifiye edilmiş, sulu çözeltilerden bakır iyonlarının zenginleştirilmesi ve atomik absorpsiyon spektrometresi ile tayininde kullanılmıştır. Hazırlanan biyosorbentin karakterizasyonunda taramalı elektron mikroskobu (SEM) ve fourier dönüşümlü infrared spektroskopisi (FTIR) analizleri kullanılmıştır. Zenginleştirme yöntemi olarak katı faz özütleme yöntemi kolon sisteminde çalışılmış, pH, geri alma çözeltisi, kolon akış hızı, örnek hacmi gibi parametreler optimize edilmiştir. Ortalama geri kazanım ve bağıl standart sapma (RSD) değerleri Cu(II) iyonları için %99,43±1,14 ve %2,23 olarak bulunmuştur. Biyosorbentin kapasitesinin belirlenmesi amacıyla Langmuir ve Freundlich izoterm grafikleri çizilmiştir. Bakır iyonları için en yüksek biyosorbent kapasitesi Langmuir izoterm modelinden ham Prunus Dulcis L. kabukları için 34,60 mg g-1 EDTA ile modifiye edilmiş Prunus Dulcis L. kabukları için ise 42,19 mg g-1 olarak hesaplanmıştır. Yöntemin doğruluğunu teyit etmek için sertifikalı referans madde (ERML-CA021a) analizi yapılmış ve kantitatif sonuçlar elde edilmiştir.

Kaynakça

  • [1]S. Kuppusamy, P. Thavamani, M. Megharaj, K. Venkateswarlu, Y. B. Lee, R. Naidu, “Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents,” Water Air Soil Pollution, vol. 227, no. 62, pp. 1-11, 2016.
  • [2]N. E. Gümüş, B. Aşıkkutlu, H. B. Keskinkaya, C. Akköz, “Comparison of heavy metal absorption of some algae isolated from Altınapa Dam Lake (Konya),” Journal of Anatolian Environmental and Animal Sciences, no. 1, pp. 50-56, 2021.
  • [3]P. Liang, Q. Ding, F. Song, “Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples,” Journal of Separation Science, vol. 28, pp. 2339–2343, 2005.
  • [4]N. Ozkantar, E. Yilmaz, M. Soylak, M. Tuzen, “Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements,” Food Chemistry, vol. 321, pp. 126737, 2020.
  • [5]N. Al-Masoud, M. Habila, Z. A. ALOthman, T. S. S. Alomara, N. Alraqibah, M. Sheikh, A. A. Ghfar and M. Soylak, “Nano-clay as solid phase microextractor of copper, cadmium and lead for ultra-trace quantification by ICP-MS,” Analytical Methods, vol. 12, pp. 4949-4955, 2020.
  • [6]S. Kilic, M. Kilic and M. Soylak, “The determination of toxic metals in some traditional cosmetic products and health risk assessment,” Biological Trace Element Research, vol. 199, pp. 2272–2277, 2021.
  • [7]W. A Khan, M. B Arain and M. Soylak, “Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity,” Food and Chemical Toxicology, vol.145, pp. 111704, 2020.
  • [8]M. Tuzen, A. Elik, B. Hazer, S. Şimşek, N. Altunay, “Poly(styrene)-co-2-vinylpyridine copolymer as a novel solid-phase adsorbent for determination of manganese and zinc in foods and vegetables by FAAS,” Food Chemistry, vol. 333, pp. 127504, 2020.
  • [9]N. Altunay, B. Hazer, M. Tuzen, A. Elik, “A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent:Synthesis, characterization and application,” Food Chemistry, vol. 359, pp. 129923, 2021.
  • [10]Ö. Yalçınkaya, O. M. Kalfa, and A. R. Türker, “Chelating agent free-solid phase extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by new nano hybrid material (ZrO2/B2O3),”Journal of Hazardous Materials, vol. 195, pp. 332-339, 2011.
  • [11]M. Soylak, O. Ozalp and F. Uzcan, “Magnetic nanomaterials for the removal, separation and preconcentration of organic and inorganic pollutants at trace levels and their practical applications: A review,” Trends in Environmental Analytical Chemistry, vol. 29, pp. e00109, 2021.
  • [12]E. Ay, Z. Tekin, N. Özdoğan and S. Bakırdere, “Zirconium nanoparticles based vortex assisted ligandless dispersive solid phase extraction for trace determination of lead in domestic wastewater using flame atomic absorption spectrophotometry”, Bulletin of Environmental Contamination and Toxicology, 2021. https://doi.org/10.1007/s00128-021-03318-0.
  • [13]Y. Bulut and Z. Tez, “Adsorption studies on ground shells of hazelnut and almond,” Journal of Hazardous Material, vol. 149, pp. 35–41, 2007.
  • [14]E. Pehlivan, T. Altun, S. Cetin, M. I. Bhanger, “Lead sorption by waste biomass of hazelnut and almond shell,” Journal of Hazardous Material, vol. 167, pp. 1203–1208, 2009.
  • [15]A. Ronda, M. A. Martı´n-Lara, E. Dionisio, G. Blazquez, M. Calero, “Effect of lead in biosorption of copper by almond shell,” Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 466–473, 2013.
  • [16]N. N. Rudi, M. S. Muhamad, L. T. Chuan, J. Alipal, S. Omar, N. Hamidon, N. H. Abdul Hamid, N. M. Sunar, R. Ali, H. Harun, “Evolution of adsorption process for manganese removal in water via agricultural waste sorbents,” Heliyon, vol. 6, no. 9, pp. e05049, 2020.
  • [17]S. İnan and B. Ozkan, “Sorption of cobalt and nickel on narcissus tazetta l. leaf powder”, Journal of the Turkish Chemical Society Section A: Chemistry, vol. 8, no. 3, pp. 705–714, 2021.
  • [18]E. H. Gürkan, “Ağır metal iyonlarının tarımsal atıklar ile biyosorpsiyonunun araştırılması,” Niğde Ömer Halisdemir University Journal of Engineering Sciences, c. 10, s. 2, ss. 712-722, 2021.
  • [19]M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H. R. Kermani, “Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone,” Journal of Hazardous Material, vol. 150, pp. 322–327, 2008.
  • [20]H. Özkalkan and R. Saygili Canlidinç, “Investigation of the conditions for preconcentration of cadmium ions by solid phase extraction method using modified Juglans regia l. shells,” Journal of AOAC International, vol. 104, pp. 1246-1254, 2021.
  • [21]M. M. Kabir, S. S. P. Mouna, S. Akter, S. Khandaker, M. Didar-ul-Alam, N. M. Bahadur, “Tea waste based natural sorbent for toxic pollutant removal from waste samples,” Journal of Molecular Liquids, vol. 322, pp. 115012, 2021.
  • [22]P. N. Fotsing, N. Bouazizi, E. D. Woumfo, N. Mofaddel, F. Le Derf, J. Vieillard, “Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell sorbent,” Journal of Environmental Chemical Engineering, vol. 9, pp. 104618, 2021.
  • [23]B. Singha, S. K. Das, “Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes,” Colloids and Surfaces B: Biointerfaces, vol. 107, pp. 97–106, 2013.
  • [24]I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361-1403, 1918.
  • [25]H. M. F. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Physikalische Chemie vol. 57, pp. 385-470, 1906.
  • [26]A. H. El-Sheikh, J.A. Sweileh and M. I. Saleh. “Partially pyrolyzed olive pomace sorbent of high permeability for preconcentration of metals from environmental waters,” Journal of Hazardous Materials, vol. 169, no. 1-3, pp. 58–64, 2009.
  • [27]L. Pelit, F. N. Ertaş, A. E. Eroğlu, T. Shahwan, H. Tural, “Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk,” Bioresource Technology, vol. 102, no. 19, pp. 8807–8813, 2011.
  • [28]R. S. D. Castro, L. Caetano, G. Ferreira, P. M. Padilha, M. J. Saeki, L. F. Zara, M. A. U. Martines and G.R. Castro, “Banana peel applied to the solid phase extraction of copper and lead from river water: Preconcentration of metal ions with a fruit waste,” Industrial & Engineering Chemistry Research, vol. 50, pp. 3446–3451, 2011.
  • [29]A. O. Jorgetto, R. I. V. Silva, M. J. Saeki, R.C. Barbosa, M. A. U. Martines, S. M. A. Jorge, A. C. P. Silva, J. F. Schneider, G. R. Castro, “Cassava root husks powder as green adsorbent for the removal of Cu(II) from natural river water,” Applied Surface Science, vol. 288, pp. 356–362, 2014.
  • [30]A. C. P. Silva, A. O. Jorgetto, M. H. P. Wondracek, R. M. Galera, J. F. Schneider, M. J. Saeki, V. A. Pedrosa, L. F. Zara, G. R.Castro, “Properties, characteristics and application of grinded Malpighia emargiata seeds in the removal of toxic metals from water,” Groundwater for Sustainable Development, vol. 6, pp. 50-56, 2018.
  • [31]B. Topuz, F. Batmaz, O. Külköylüoğlu, Ç. Çapraz, “First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co(II), Cu(II) and Mn(II) trace metal ions,” Microchemical Journal, vol. 167, pp. 106335, 2021.
  • [32]Ş. Aslan, S. Yıldız, M. Öztürk, “Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik”, Pamukkale Universitesi Mühendislik Bilimleri Dergisi, c. 27, s. 3, ss. 359-367, 2021.
  • [33]A. Tunçeli, A. Ulaş, O. Acar, A. R. Türker, “Solid phase extraction of cadmium and lead from water by Amberlyst 15 and determination by flame atomic absorption spectrometry,” Bulletin of Environmental Contamination and Toxicology, vol. 102, pp. 297–302, 2019.
  • [34]R. A. Zounr, M. Tuzen, N. Deligonul, M. Y. Khuhawar, “A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry,” Food Chemistry, vol. 253 pp. 277–283, 2018.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Rukiye Saygılı Canlıdinç 0000-0002-3942-3196

Yayımlanma Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

APA Saygılı Canlıdinç, R. (2022). EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(3), 1476-1488. https://doi.org/10.29130/dubited.998329
AMA Saygılı Canlıdinç R. EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini. DÜBİTED. Temmuz 2022;10(3):1476-1488. doi:10.29130/dubited.998329
Chicago Saygılı Canlıdinç, Rukiye. “EDTA Ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi Ve FAAS Ile Tayini”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, sy. 3 (Temmuz 2022): 1476-88. https://doi.org/10.29130/dubited.998329.
EndNote Saygılı Canlıdinç R (01 Temmuz 2022) EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 3 1476–1488.
IEEE R. Saygılı Canlıdinç, “EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini”, DÜBİTED, c. 10, sy. 3, ss. 1476–1488, 2022, doi: 10.29130/dubited.998329.
ISNAD Saygılı Canlıdinç, Rukiye. “EDTA Ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi Ve FAAS Ile Tayini”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/3 (Temmuz 2022), 1476-1488. https://doi.org/10.29130/dubited.998329.
JAMA Saygılı Canlıdinç R. EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini. DÜBİTED. 2022;10:1476–1488.
MLA Saygılı Canlıdinç, Rukiye. “EDTA Ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi Ve FAAS Ile Tayini”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 10, sy. 3, 2022, ss. 1476-88, doi:10.29130/dubited.998329.
Vancouver Saygılı Canlıdinç R. EDTA ile Modifiye Edilmiş Prunus Dulcis L. Kabukları Kullanılarak Bakır İyonlarının Sulu Çözeltiden Zenginleştirilmesi ve FAAS ile Tayini. DÜBİTED. 2022;10(3):1476-88.