Araştırma Makalesi
BibTex RIS Kaynak Göster

İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi

Yıl 2022, Cilt: 10 Sayı: 4, 1984 - 1997, 25.10.2022

Öz

Bu çalışma iki 5-(3'-amino-4'-arilazo-1H-pirazol-5'-ilazo) barbitürik asit boyasının (Boya 1 ve Boya 2) ekotoksikolojik çalışmalarda model organizma olarak bilinen Chironomus riparius (Diptera: Chironomidae) üzerindeki mortalite etkisinin ve akut toksisitesinin incelenmesi amacıyla yapılmıştır. Detaylı mortalite değerlendirmelerinden sonra Boya 2’nin organizmalar üzerinde Boya 1’e kıyasla daha fazla mortalite etkisine sebep olma potansiyeline sahip olduğu ve sucul ekosistemlerde yüksek konsantrasyonlarda uzun süreli bulunmasının bu ekosistemler için kayda değer bir tehdit oluşturabileceği sonucuna varılmıştır. Gerçekleştirilen toksisite sınıflandırmasında Boya 1’in, 24 ve 48 saat maruziyetlerde pratikte toksik değilken 72 ve 96 saat maruziyetlerde hafif derecede toksik olduğu, Boya 2’nin ise 24 saat maruziyette pratikte toksik değilken 48, 72 ve 96 saat maruziyetlerde hafif derecede toksik olduğu bulunmuştur. Mortalite etkisi ve toksisitedeki bu farklılıkların boya yapısında bulunan sübstitüentlerin farklı olmasından kaynaklanabileceği söylenebilir. Bu çalışma, yapısında metoksi ve metil grubu içeren azo boyaların (sırasıyla Boya 1 ve Boya 2) C. riparius üzerindeki mortalite etkisi ve akut toksisitesi ile ilgili önemli bilgiler sunmaktadır. Ancak daha kapsamlı ekotoksikolojik değerlendirmeler yapabilmek için bu ve benzeri azo boyaların ve bozunma ürünlerinin farklı organizmalar üzerindeki etkilerinin ve etki mekanizmalarının moleküler düzeyde incelendiği ve sucul ortamlardaki gerçek konsantrasyonlarının belirlendiği daha ileri çalışmalara ihtiyaç olduğu bir gerçektir.

Teşekkür

Çalışmada test edilen boyaları sağlayan Doç. Dr. Aykut DEMİRÇALI’ya çok teşekkür ederim. Bu çalışma herhangi bir kurum ya da kuruluştan maddi destek almamıştır.

Kaynakça

  • [1]I. Bashir, F. A. Lone, R. A. Bhat, S. A. Mir, Z. A. Dar, and S. A. Dar, “Concerns and threats of contamination on aquatic ecosystems,” Bioremediation Biotechnol. Sustain. Approaches to Pollut. Degrad., pp. 1–26, 2020.
  • [2]G. R. Scott and K. A. Sloman, “The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity,” Aquat. Toxicol., vol. 68, no. 4, pp. 369–392, 2004.
  • [3]N. C. Yildirim and M. Yaman, “The usability of oxidative stress and detoxification biomarkers in Gammarus pulex for ecological risk assessment of textile dye methyl orange,” Chem. Ecol., vol. 35, no. 4, pp. 319–329, 2019.
  • [4]P. F. Gordon and P. Gregory, “Azo Dyes,” in Organic Chemistry in Colour, Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 95–162.
  • [5]H. Zollinger, Color chemistry: syntheses, properties, and applications of organic dyes and pigments, 3rd rev. Weinheim: Verlag Helvetica Chimica Acta and Wiley-VCH, 2003.
  • [6]A. Demirçalı, F. Karcı, and F. Sari, “Synthesis and absorption properties of five new heterocyclic disazo dyes containing pyrazole and pyrazolone and their acute toxicities on the freshwater amphipod Gammarus roeseli,” Color. Technol., vol. 137, no. 3, pp. 280–291, 2021.
  • [7]A. Demirçalı, “5-(3’-Amino-4’-arilazo-1H-pirazol-5’-il azo) barbitürik asit boyarmaddelerin sentezi ve spektroskopik özelliklerinin incelenmesi,” Pamukkale Üniversitesi Mühendislik Bilim. Derg., vol. 24, no. 7, pp. 1293–1297, 2018.
  • [8]A. Demirçalı, “Novel heterocyclic disazo dyes containing pyrazole and phenylpyrazole. part 1: Synthesis, characterization, solvent polarity and acid-base sensitive characteristics,” J. Mol. Struct., vol. 1231, p. 129960, 2021.
  • [9]F. Yıldırım, A. Demirçalı, F. Karcı, A. Bayrakdar, P. T. Taşlı, and H. H. Kart, “New coumarin-based disperse disazo dyes: Synthesis, spectroscopic properties and theoretical calculations,” J. Mol. Liq., vol. 223, pp. 557–565, 2016.
  • [10]F. Yıldırım, “3-amino-5-hidroksi-1H-pirazol bazlı bazı yeni disazo boyarmaddelerinin sentezi ve spektroskopik özellikleri,” Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg., vol. 16, no. 1, pp. 189–199, 2021.
  • [11]M. T. Gabr, N. S. El-Gohary, E. R. El-Bendary, M. M. El-Kerdawy, N. Ni, and M. I. Shaaban, “Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of benzothiazole derivatives,” Chinese Chem. Lett., vol. 26, no. 12, pp. 1522–1528, 2015.
  • [12]A. K. El-Damasy, J. H. Lee, S. H. Seo, N. C. Cho, A. N. Pae, and G. Keum, “Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-RafV600E and C-Raf kinase inhibitory activities,” Eur. J. Med. Chem., vol. 115, pp. 201–216, 2016.
  • [13]S. H. Lin and C. F. Peng, “Treatment of textile wastewater by electrochemical method,” Water Res., vol. 28, no. 2, pp. 277–282, 1994.
  • [14]Y. Verma, “Toxicity assessment of dye containing industrial effluents by acute toxicity test using Daphnia magna,” Toxicol. Ind. Health, vol. 27, no. 1, pp. 41–49, 2011.
  • [15]R. Anliker, “Color chemistry and the environment,” Ecotoxicol. Environ. Saf., vol. 1, no. 2, pp. 211–237, Sep. 1977.
  • [16]J. S. Bae and H. S. Freeman, “Aquatic toxicity evaluation of new direct dyes to the Daphnia magna,” Dye. Pigment., vol. 73, no. 1, pp. 81–85, 2007.
  • [17]R. O. Alves de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragão Umbuzeiro, “Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen., vol. 626, no. 1–2, pp. 53–60, Jan. 2007.
  • [18]E. R. A. Ferraz, M. D. Grando, and D. P. Oliveira, “The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri,” J. Hazard. Mater., vol. 192, no. 2, pp. 628–633, 2011.
  • [19]E. Zucker, “Hazard Evaluation Division Standard Evaluation Procedure: Acute Toxicity Test for Freshwater Invertebrates,” US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, 1985.
  • [20]P. V. Michailova, “Rearrangements in Chironomidae (Diptera) genomes induced by various environmental stress factors,” Russ. J. Genet. Appl. Res., vol. 1, no. 1, pp. 10–20, 2011.
  • [21]M. de la Fuente, R. M. Folgar, P. Martínez-Paz, E. Cortés, J. L. Martínez-Guitarte, and M. Morales, “Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius,” Environ. Sci. Pollut. Res., 2021.
  • [22]R. Planelló, Ó. Herrero, P. Gómez-Sande, I. Ozáez, F. Cobo, and M. J. Servia, “Ecdysone-related biomarkers of toxicity in the model organism Chironomus riparius: Stage and sex-dependent variations in gene expression profiles,” PLoS One, vol. 10, no. 10, p. e0140239, Oct. 2015.
  • [23]H. B. Doria and M. Pfenninger, “A multigenerational approach can detect early Cd pollution in Chironomus riparius,” Chemosphere, vol. 262, p. 127815, Jan. 2021.
  • [24]A. Sari and F. Sari, “A comparative examination of acute toxicities of three disazo dyes to freshwater macroinvertebrates Gammarus roeseli (Crustacea: Amphipoda) and Chironomus riparius (Insecta: Diptera),” Chem. Ecol., vol. 37, no. 8, pp. 683–703, 2021.
  • [25]B. D. C. Ventura-Camargo and M. A. Marin-Morales, “Azo Dyes: Characterization and Toxicity– A Review,” Text. Light Ind. Sci. Technol., vol. 2, no. 2, pp. 85–103, 2013.
  • [26]M. Hernández-Zamora and F. Martínez-Jerónimo, “Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos,” Ecotoxicology, vol. 28, no. 8, pp. 890–902, 2019.
  • [27]E. R. A. Ferraz et al., “Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test,” Environ. Toxicol., vol. 26, no. 5, pp. 489–497, Oct. 2011.
  • [28]A. Bafana, S. S. Devi, and T. Chakrabarti, “Azo dyes: Past, present and the future,” Environ. Rev., vol. 19, no. 1, pp. 350–370, 2011.

Evaluation of Mortality Effect and Acute Toxicity of Two Disazo Dyes on Chironomus riparius (Diptera: Chironomidae)

Yıl 2022, Cilt: 10 Sayı: 4, 1984 - 1997, 25.10.2022

Öz

This study was carried out to evaluate mortality effect and acute toxicity of two 5-(3'-amino-4'-arylazo-1H-pyrazole-5'-ylazo) barbituric acid dyes (Dye 1 and Dye 2) on Chironomus riparius (Diptera: Chironomidae) known as model organism in ecotoxicological studies. After detailed mortality assessments, it was concluded that Dye 2 had the potential to cause a greater mortality effect on organisms compared to Dye 1 and that its long-term existence in aquatic ecosystems at high concentrations could pose a significant threat to these ecosystems. In the performed toxicity classification, it was found that Dye 1 was practically non-toxic at 24- and 48-hour exposures but slightly toxic at 72- and 96-hour exposures, while Dye 2 was practically non-toxic at 24-hour exposure but slightly toxic at 48-, 72- and 96-hour exposures. It can be suggested that these differences in mortality effect and toxicity may be due to the different substituents in the dye structure. The present study provides valuable information regarding mortality effect and acute toxicity of azo dyes containing methoxy and methyl groups in their structure (Dye 1 and Dye 2, respectively) on C. riparius. However, to be able to make more comprehensive ecotoxicological evaluations, it is a fact that there is a necessity for further studies in which the effects and action mechanisms of these and suchlike azo dyes and their degradation products on different organisms will be investigated at the molecular level and their actual concentrations in aquatic environments will be determined. 

Kaynakça

  • [1]I. Bashir, F. A. Lone, R. A. Bhat, S. A. Mir, Z. A. Dar, and S. A. Dar, “Concerns and threats of contamination on aquatic ecosystems,” Bioremediation Biotechnol. Sustain. Approaches to Pollut. Degrad., pp. 1–26, 2020.
  • [2]G. R. Scott and K. A. Sloman, “The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity,” Aquat. Toxicol., vol. 68, no. 4, pp. 369–392, 2004.
  • [3]N. C. Yildirim and M. Yaman, “The usability of oxidative stress and detoxification biomarkers in Gammarus pulex for ecological risk assessment of textile dye methyl orange,” Chem. Ecol., vol. 35, no. 4, pp. 319–329, 2019.
  • [4]P. F. Gordon and P. Gregory, “Azo Dyes,” in Organic Chemistry in Colour, Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 95–162.
  • [5]H. Zollinger, Color chemistry: syntheses, properties, and applications of organic dyes and pigments, 3rd rev. Weinheim: Verlag Helvetica Chimica Acta and Wiley-VCH, 2003.
  • [6]A. Demirçalı, F. Karcı, and F. Sari, “Synthesis and absorption properties of five new heterocyclic disazo dyes containing pyrazole and pyrazolone and their acute toxicities on the freshwater amphipod Gammarus roeseli,” Color. Technol., vol. 137, no. 3, pp. 280–291, 2021.
  • [7]A. Demirçalı, “5-(3’-Amino-4’-arilazo-1H-pirazol-5’-il azo) barbitürik asit boyarmaddelerin sentezi ve spektroskopik özelliklerinin incelenmesi,” Pamukkale Üniversitesi Mühendislik Bilim. Derg., vol. 24, no. 7, pp. 1293–1297, 2018.
  • [8]A. Demirçalı, “Novel heterocyclic disazo dyes containing pyrazole and phenylpyrazole. part 1: Synthesis, characterization, solvent polarity and acid-base sensitive characteristics,” J. Mol. Struct., vol. 1231, p. 129960, 2021.
  • [9]F. Yıldırım, A. Demirçalı, F. Karcı, A. Bayrakdar, P. T. Taşlı, and H. H. Kart, “New coumarin-based disperse disazo dyes: Synthesis, spectroscopic properties and theoretical calculations,” J. Mol. Liq., vol. 223, pp. 557–565, 2016.
  • [10]F. Yıldırım, “3-amino-5-hidroksi-1H-pirazol bazlı bazı yeni disazo boyarmaddelerinin sentezi ve spektroskopik özellikleri,” Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg., vol. 16, no. 1, pp. 189–199, 2021.
  • [11]M. T. Gabr, N. S. El-Gohary, E. R. El-Bendary, M. M. El-Kerdawy, N. Ni, and M. I. Shaaban, “Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of benzothiazole derivatives,” Chinese Chem. Lett., vol. 26, no. 12, pp. 1522–1528, 2015.
  • [12]A. K. El-Damasy, J. H. Lee, S. H. Seo, N. C. Cho, A. N. Pae, and G. Keum, “Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-RafV600E and C-Raf kinase inhibitory activities,” Eur. J. Med. Chem., vol. 115, pp. 201–216, 2016.
  • [13]S. H. Lin and C. F. Peng, “Treatment of textile wastewater by electrochemical method,” Water Res., vol. 28, no. 2, pp. 277–282, 1994.
  • [14]Y. Verma, “Toxicity assessment of dye containing industrial effluents by acute toxicity test using Daphnia magna,” Toxicol. Ind. Health, vol. 27, no. 1, pp. 41–49, 2011.
  • [15]R. Anliker, “Color chemistry and the environment,” Ecotoxicol. Environ. Saf., vol. 1, no. 2, pp. 211–237, Sep. 1977.
  • [16]J. S. Bae and H. S. Freeman, “Aquatic toxicity evaluation of new direct dyes to the Daphnia magna,” Dye. Pigment., vol. 73, no. 1, pp. 81–85, 2007.
  • [17]R. O. Alves de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragão Umbuzeiro, “Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen., vol. 626, no. 1–2, pp. 53–60, Jan. 2007.
  • [18]E. R. A. Ferraz, M. D. Grando, and D. P. Oliveira, “The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri,” J. Hazard. Mater., vol. 192, no. 2, pp. 628–633, 2011.
  • [19]E. Zucker, “Hazard Evaluation Division Standard Evaluation Procedure: Acute Toxicity Test for Freshwater Invertebrates,” US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, 1985.
  • [20]P. V. Michailova, “Rearrangements in Chironomidae (Diptera) genomes induced by various environmental stress factors,” Russ. J. Genet. Appl. Res., vol. 1, no. 1, pp. 10–20, 2011.
  • [21]M. de la Fuente, R. M. Folgar, P. Martínez-Paz, E. Cortés, J. L. Martínez-Guitarte, and M. Morales, “Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius,” Environ. Sci. Pollut. Res., 2021.
  • [22]R. Planelló, Ó. Herrero, P. Gómez-Sande, I. Ozáez, F. Cobo, and M. J. Servia, “Ecdysone-related biomarkers of toxicity in the model organism Chironomus riparius: Stage and sex-dependent variations in gene expression profiles,” PLoS One, vol. 10, no. 10, p. e0140239, Oct. 2015.
  • [23]H. B. Doria and M. Pfenninger, “A multigenerational approach can detect early Cd pollution in Chironomus riparius,” Chemosphere, vol. 262, p. 127815, Jan. 2021.
  • [24]A. Sari and F. Sari, “A comparative examination of acute toxicities of three disazo dyes to freshwater macroinvertebrates Gammarus roeseli (Crustacea: Amphipoda) and Chironomus riparius (Insecta: Diptera),” Chem. Ecol., vol. 37, no. 8, pp. 683–703, 2021.
  • [25]B. D. C. Ventura-Camargo and M. A. Marin-Morales, “Azo Dyes: Characterization and Toxicity– A Review,” Text. Light Ind. Sci. Technol., vol. 2, no. 2, pp. 85–103, 2013.
  • [26]M. Hernández-Zamora and F. Martínez-Jerónimo, “Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos,” Ecotoxicology, vol. 28, no. 8, pp. 890–902, 2019.
  • [27]E. R. A. Ferraz et al., “Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test,” Environ. Toxicol., vol. 26, no. 5, pp. 489–497, Oct. 2011.
  • [28]A. Bafana, S. S. Devi, and T. Chakrabarti, “Azo dyes: Past, present and the future,” Environ. Rev., vol. 19, no. 1, pp. 350–370, 2011.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fikret Sarı 0000-0002-6141-0690

Yayımlanma Tarihi 25 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Sarı, F. (2022). İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 1984-1997. https://doi.org/10.29130/dubited.1031641
AMA Sarı F. İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi. DÜBİTED. Ekim 2022;10(4):1984-1997. doi:10.29130/dubited.1031641
Chicago Sarı, Fikret. “İki Disazo Boyanın Chironomus Riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi Ve Akut Toksisitesinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, sy. 4 (Ekim 2022): 1984-97. https://doi.org/10.29130/dubited.1031641.
EndNote Sarı F (01 Ekim 2022) İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 1984–1997.
IEEE F. Sarı, “İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi”, DÜBİTED, c. 10, sy. 4, ss. 1984–1997, 2022, doi: 10.29130/dubited.1031641.
ISNAD Sarı, Fikret. “İki Disazo Boyanın Chironomus Riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi Ve Akut Toksisitesinin İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (Ekim 2022), 1984-1997. https://doi.org/10.29130/dubited.1031641.
JAMA Sarı F. İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi. DÜBİTED. 2022;10:1984–1997.
MLA Sarı, Fikret. “İki Disazo Boyanın Chironomus Riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi Ve Akut Toksisitesinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 10, sy. 4, 2022, ss. 1984-97, doi:10.29130/dubited.1031641.
Vancouver Sarı F. İki Disazo Boyanın Chironomus riparius (Diptera: Chironomidae) Üzerindeki Mortalite Etkisi ve Akut Toksisitesinin İncelenmesi. DÜBİTED. 2022;10(4):1984-97.