Araştırma Makalesi
BibTex RIS Kaynak Göster

5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı

Yıl 2022, Cilt: 10 Sayı: 5, 52 - 64, 26.12.2022
https://doi.org/10.29130/dubited.1093235

Öz

Bu çalışmada 5G uygulamalarında kullanılmak üzere dielektrik malzemesi PF-4 (Ԑr:1,06, tanδ:0,0001, h:2 mm), toprak ve yama kısmı yapışkan bakır banttan oluşan, toplam 42,453 GHz bant genişliğinde çalışan yüksek kazançlı bir eliptik mikroşerit anten tasarlanmıştır. Tasarlanan anten 5G uygulamalar için Orta bant I, Orta bant II ve Yüksek bantta yer alan 6 farklı frekans aralığında çalışabilmektedir. Antenin çalışma frekans aralıkları 3,46-3,69 GHz; 11,61-12,34 GHz; 13,22-20,29 GHz; 21,43-21,92 GHz; 24,44-25,14 GHz ve 26,77-60 GHz’dir. Bu frekans aralıklarında en düşük anten kazancı 8,28 dBi iken en yüksek anten kazancı ise 30,35 dBi’dir. Antenin yüksek bantta, 47,7 GHz frekansındaki verimi % 96,721’dir. Tasarlanan yüksek kazançlı anten, 5G uygulamalarında anten dizisi kullanılmadan geniş bir frekans bandı ve birden fazla frekans aralığında kullanılabilmektedir.

Kaynakça

  • [1]Karel (2022, 10 Ocak). 5g-nedir-5g-teknolojisi-neler-sagliyor [Çevrimiçi]. Erişim: https://www.karel.com.tr/blog/5g-nedir-5g-teknolojisi-neler-sagliyor.
  • [2]Society of Cable Telecommunication Engineers, Broadband Library, by Ronan McLaughlin (2022, 5 Ocak). 5G Low Latency Requirements [Çevrimiçi]. Erişim: https://broadbantlibrary.com/5g-low-latency-requirements/
  • [3]Samsung (2022, 10 Ocak). Samsung Successfully Conducts 5G Prototype Trial with China Mobile Communication Corporation [Çevrimiçi]. Erişim: https://news.samsung.com/global/samsung-successfully-conducts-5g-prototype-trial-with-china-mobile-communication-corporation
  • [4]Chinadaily (2022, 10 Ocak). China performs first 5G-based remote surgery on human brain [Çevrimiçi]. Erişim: http://www.chinadaily.com.cn/a/201903/18/WS5c8f0528a3106c65c34ef2b6.html
  • [5]M. Yerlikaya “5G mobil terminaller için yüksek kazançlı ve çoklu bant frekans seçici anten sistemi tasarımı”, Doktora Tezi, Elektrik Elektronik Mühendisliği Bölümü, Konya Teknik Üniversitesi, Konya, 2021.
  • [6]B. Hiçdurmaz ve Ö. Faruk, Design and Analysis of 28 GHz Microstrip Patch Antenna for Different Type FR4 Claddings, Uludağ University Journal of The Faculty of Engineering, Vol. 24, No. 2, pp. 265-288, 2019. RESEARCH DOI: 10.17482/uumfd.548410.
  • [7]D. A. Outerelo, A. V. Alejos, M. G. Sanchez, and M. V. Isasa, “Microstrip Antenna for 5G Broadband Communications: Overview of Design Issues,” 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015. DOI:10.1109/APS.2015.7305610, 2015.
  • [8]D. Imran, M. Farooqi, “Millimeter-Wave Microstrip Patch Antenna for 5G Mobile Communication,” Conference: 2018 International Conference on Engineering and Emerging Technologies (ICEET), 2018. DOI:10.1109/ICEET1.2018.8338623
  • [9]W. Ahmad and W. T. Khan, “Small form factor dual bant (28/38 GHz) PIFA antenna for 5G applications,” IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM),2017. DOI:10.1109/ICMIM.2017.7918846.
  • [10]B. Tütüncü, “Microstrip Antenna for 5G Communication: Design and Performance Analysis,” HORA- International Congress on Human-Computer Interaction, Optimization and Robotic Applications Ankara/Turkey, 2020.
  • [11]S. Punith, S. K. Praveenkumar, A. J. Abhinandan, and M.R. Ahmed, “A Novel Multiband Microstrip Patch Antenna for 5G Communications,” Third International Conference on Computing and Network Communications (CoCoNet’19), Procedia Computer Science vol. 171, pp. 2080–2086, 2020.
  • [12]M. Nabil and M. M. A. Faisal, “Design, Simulation, and Analysis of a High Gain Small Size Array Antenna for 5G Wireless Communication,” Wireless Personal Communications vol. 116 pp:2761–2776, 2021. https://doi.org/10.1007/s11277-020-07819-9.
  • [13]R. Kumar and M. Madhavan, “Hybrid Fabric Wearable Antenna Design and Evaluation for High Speed 5G Applications,” Wireless Personal Communications, https://doi.org/10.1007/s11277-021-08702-x1 3.
  • [14]M. Shakir, S. Aslam, U. Sarwar, M. Adnan, and M. R. Khan, “Performance evaluation and design of 5g communication‑based millimeter wave antenna,” Wireless Com Network, 2021. https://doi.org/10.1186/s13638-021-02052-9.
  • [15]A. Lak, Z. Adelpour, H. Oraizi and N.Parhizgar, “Design and SAR Assessment of Three Compact 5G Antenna Arrays,” Scientific Reports, 2021. https://doi.org/10.1038/s41598-021-00679-8.
  • [16]M. K. Shereen, M.I. Khattak, and j. Nebhen, “A review of achieving frequency reconfiguration through switching in microstrip patch antennas for future 5G applications,” Alexandria Engineering Journal, vol. 61, Issue. 1, pp. 29–40, 2022. www.elsevier.com/locate/aej.
  • [17]K. Jain and V. S. Kushwah, “Design and development of dual bant antenna for sub-6 frequency bant,” Materials Today: Proceedings vol: 47, pp. 6795–6798, 2021, https://doi.org/10.1016/j.matpr.2021.05.133.
  • [18]K. K. Kazemi, E. Hosseini, S. Hu, R. Narang, S. Li, M. Arjmand and M. H. Zarifi, “MXene membrane in planar microwave resonant structures for 5G applications, “Applied Materials Today vol. Vol: 26, 2022, 101294, https://doi.org/10.1016/j.apmt.2021.101294.
  • [19]R. Song, Z. Wang, H. Zu, Q. Chen, B. Mao, Z. P. Wu and D. He, “Wideband and low sidelobe graphene antenna array for 5G applications,” Science Bulletin, Vol. 66, Issue 2, pp. 103-106, 2021, https://doi.org/10.1016/j.scib.2020.09.028.
  • [20]H. T. Sediq, J. Nourinia, C. Ghobadi, and B. Mohammadi, “A Novel eye-shaped monopole antenna for wideband and 5g applications,” IETE Journal of Research, 2021, DOI: 10.1080/03772063.2020.1859959, 2021.
  • [21]A. T. Abed, M. S. Jit Singh, V. Thiruchelvam, S. Duraikannan, O. A. Tawfeeq, B. A. Tawfeeq, and M. T. Islam, “Challenges and limits of fractal and slot antennas for WLAN, LTE, ISM, and 5G communication: a review paper,” Annals of Telecommunications vol 76 pp. 547–557, 2021. https://doi.org/10.1007/s12243-020-00828-6.
  • [22]A. Firdausi, L. Damayanti, G. P. N. Hakim, and M. Alaydrus, “Design of A Dual-Bant Microstrip Antenna for 5G Communication,” Journal of Integrated and Advanced Engineering (JIAE) Vol. 1, No. 1, pp. 65-72 March 2021. http://doi.org/10.51662/jiae.v1i1.15.
  • [23]P. K. Malik and P. Tewari, “Design of UWB Antenna for the 5G Mobile Communication Applications: A Review 2020,” International Conference on Computation, Automation and Knowledge Management (ICCAKM), 2020 DOI: 10.1109/ICCAKM46823.2020.9051556.
  • [24]D. N. Elsheakh, “Reconfigurable Frequency and Steerable Beam of Monopole Antenna Based on Graphene Pads,” International Journal of RF and Microwave Computer-Aided Engineering, DOI: 10.1002/mmce.22156, 2019.
  • [25]D. Elsheakh and H. Shawkey, “5G Wideband on-chip dipole antenna for WSN soil moisture monitoring,” International Journal of Rf and Microwave Computer-aided Engineering. DOI: 10.1002/mmce.22556, 2021.
  • [26]M. K. Shereen, M. I. Khattak and G. Witjaksono, “A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications,” Journal of Computational Electronics 18: pp. 1065–1102, https://doi.org/10.1007/s10825-019-01336-0, 2019.
  • [27]A. R. Gutiérrez, A. Reyna, L.I. Balderas, M. A. Panduro and A. L. Méndez, “Non-Uniform Antenna Array with Non-Symmetric Feeding Network for 5G Applications,” IEEE Antennas and Wireless Propagation Letters, pp.346-350, DOI 10.1109/LAWP.2021.3131437, 2022.
  • [28]N. Shaik and P. K. Malik, “A comprehensive survey 5G wireless communication systems: open issues, research challenges, channel estimation, multi carrier modulation and 5G applications,” Multimedia Tools and Applications 80, pp. 28789–28827, https://doi.org/10.1007/s11042-021-11128-z, 2021.
  • [29]Y. Cheng and Y. Dong, “Wideband circularly polarized planar antenna array for 5g millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2615-2627, 2021.
  • [30]F.B. Shiddanagouda, S. P. Teja, D. P. Saritha and A. Kumar, “Hexagonal Microstrip Patch Antenna for Bio-medical Applications,” International Journal of Advanced Technology in Engineering and Science, Vol. No.5, Issue No.3 March 2017.
  • [31]B. Hossain and F. Hossain, “Design of a Triple Band Rectangular Slot Microstrip Patch Antenna for Wireless Applications,” 2020 IEEE Region 10 Symposium (TENSYMP), DOI:10.1109/TENSYMP50017.2020.9230997, 2020.
  • [32]C. A. Balanis “Antenna Theory Analysis and Design,” Third Edition, John Wiley & Sons, Inc., Publication Published by John Wiley & Sons, Inc., Hoboken, New Jersey USA. Published Simultaneously in Canada, 2005, pp. 846–847.
  • [33]P. Srinivas, K. R. Kiran, D.S. Bidichandani, S.R. Guntupalli and K.N.V.S Kishore, “Improving the Bandwidth in the Design of Phased Array Antenna”. International Journal of Recent Scientific Research, vol. 4, Issue, 3, pp. 304 -307, March, ISSN: 0976-3031, 2013.

Elliptical Microstrip Antenna Design for 5G Applications

Yıl 2022, Cilt: 10 Sayı: 5, 52 - 64, 26.12.2022
https://doi.org/10.29130/dubited.1093235

Öz

In this study, a high-gain elliptical microstrip antenna, consisting of dielectric material PF-4 (Ԑr:1.06, tanδ:0.0001, h:2mm), ground, and patched adhesive copper tape, operating in a total bandwidth of 42.453 GHz, was designed for use in 5G applications. The designed antenna can operate in 6 different frequency bands in the Mid bant I, Mid bant II and High bant for 5G applications. The operating frequency ranges of the antenna are 3.46-3.69 GHz, 11.61-12.34 GHz, 13.22-20.29 GHz, 21.43-21.92 GHz, 24.44-25.14 GHz, 26.77-60 GHz. In these frequency ranges, the lowest antenna gain is 8.28 dBi, while the highest antenna gain is 30.35 dBi. The efficiency of the antenna in the high band, at the frequency of 47.7 GHz, is 96.721 %. The designed high-gain antenna can be used in a wide frequency band and multiple frequencies ranges without using antenna arrays in 5G applications.

Kaynakça

  • [1]Karel (2022, 10 Ocak). 5g-nedir-5g-teknolojisi-neler-sagliyor [Çevrimiçi]. Erişim: https://www.karel.com.tr/blog/5g-nedir-5g-teknolojisi-neler-sagliyor.
  • [2]Society of Cable Telecommunication Engineers, Broadband Library, by Ronan McLaughlin (2022, 5 Ocak). 5G Low Latency Requirements [Çevrimiçi]. Erişim: https://broadbantlibrary.com/5g-low-latency-requirements/
  • [3]Samsung (2022, 10 Ocak). Samsung Successfully Conducts 5G Prototype Trial with China Mobile Communication Corporation [Çevrimiçi]. Erişim: https://news.samsung.com/global/samsung-successfully-conducts-5g-prototype-trial-with-china-mobile-communication-corporation
  • [4]Chinadaily (2022, 10 Ocak). China performs first 5G-based remote surgery on human brain [Çevrimiçi]. Erişim: http://www.chinadaily.com.cn/a/201903/18/WS5c8f0528a3106c65c34ef2b6.html
  • [5]M. Yerlikaya “5G mobil terminaller için yüksek kazançlı ve çoklu bant frekans seçici anten sistemi tasarımı”, Doktora Tezi, Elektrik Elektronik Mühendisliği Bölümü, Konya Teknik Üniversitesi, Konya, 2021.
  • [6]B. Hiçdurmaz ve Ö. Faruk, Design and Analysis of 28 GHz Microstrip Patch Antenna for Different Type FR4 Claddings, Uludağ University Journal of The Faculty of Engineering, Vol. 24, No. 2, pp. 265-288, 2019. RESEARCH DOI: 10.17482/uumfd.548410.
  • [7]D. A. Outerelo, A. V. Alejos, M. G. Sanchez, and M. V. Isasa, “Microstrip Antenna for 5G Broadband Communications: Overview of Design Issues,” 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015. DOI:10.1109/APS.2015.7305610, 2015.
  • [8]D. Imran, M. Farooqi, “Millimeter-Wave Microstrip Patch Antenna for 5G Mobile Communication,” Conference: 2018 International Conference on Engineering and Emerging Technologies (ICEET), 2018. DOI:10.1109/ICEET1.2018.8338623
  • [9]W. Ahmad and W. T. Khan, “Small form factor dual bant (28/38 GHz) PIFA antenna for 5G applications,” IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM),2017. DOI:10.1109/ICMIM.2017.7918846.
  • [10]B. Tütüncü, “Microstrip Antenna for 5G Communication: Design and Performance Analysis,” HORA- International Congress on Human-Computer Interaction, Optimization and Robotic Applications Ankara/Turkey, 2020.
  • [11]S. Punith, S. K. Praveenkumar, A. J. Abhinandan, and M.R. Ahmed, “A Novel Multiband Microstrip Patch Antenna for 5G Communications,” Third International Conference on Computing and Network Communications (CoCoNet’19), Procedia Computer Science vol. 171, pp. 2080–2086, 2020.
  • [12]M. Nabil and M. M. A. Faisal, “Design, Simulation, and Analysis of a High Gain Small Size Array Antenna for 5G Wireless Communication,” Wireless Personal Communications vol. 116 pp:2761–2776, 2021. https://doi.org/10.1007/s11277-020-07819-9.
  • [13]R. Kumar and M. Madhavan, “Hybrid Fabric Wearable Antenna Design and Evaluation for High Speed 5G Applications,” Wireless Personal Communications, https://doi.org/10.1007/s11277-021-08702-x1 3.
  • [14]M. Shakir, S. Aslam, U. Sarwar, M. Adnan, and M. R. Khan, “Performance evaluation and design of 5g communication‑based millimeter wave antenna,” Wireless Com Network, 2021. https://doi.org/10.1186/s13638-021-02052-9.
  • [15]A. Lak, Z. Adelpour, H. Oraizi and N.Parhizgar, “Design and SAR Assessment of Three Compact 5G Antenna Arrays,” Scientific Reports, 2021. https://doi.org/10.1038/s41598-021-00679-8.
  • [16]M. K. Shereen, M.I. Khattak, and j. Nebhen, “A review of achieving frequency reconfiguration through switching in microstrip patch antennas for future 5G applications,” Alexandria Engineering Journal, vol. 61, Issue. 1, pp. 29–40, 2022. www.elsevier.com/locate/aej.
  • [17]K. Jain and V. S. Kushwah, “Design and development of dual bant antenna for sub-6 frequency bant,” Materials Today: Proceedings vol: 47, pp. 6795–6798, 2021, https://doi.org/10.1016/j.matpr.2021.05.133.
  • [18]K. K. Kazemi, E. Hosseini, S. Hu, R. Narang, S. Li, M. Arjmand and M. H. Zarifi, “MXene membrane in planar microwave resonant structures for 5G applications, “Applied Materials Today vol. Vol: 26, 2022, 101294, https://doi.org/10.1016/j.apmt.2021.101294.
  • [19]R. Song, Z. Wang, H. Zu, Q. Chen, B. Mao, Z. P. Wu and D. He, “Wideband and low sidelobe graphene antenna array for 5G applications,” Science Bulletin, Vol. 66, Issue 2, pp. 103-106, 2021, https://doi.org/10.1016/j.scib.2020.09.028.
  • [20]H. T. Sediq, J. Nourinia, C. Ghobadi, and B. Mohammadi, “A Novel eye-shaped monopole antenna for wideband and 5g applications,” IETE Journal of Research, 2021, DOI: 10.1080/03772063.2020.1859959, 2021.
  • [21]A. T. Abed, M. S. Jit Singh, V. Thiruchelvam, S. Duraikannan, O. A. Tawfeeq, B. A. Tawfeeq, and M. T. Islam, “Challenges and limits of fractal and slot antennas for WLAN, LTE, ISM, and 5G communication: a review paper,” Annals of Telecommunications vol 76 pp. 547–557, 2021. https://doi.org/10.1007/s12243-020-00828-6.
  • [22]A. Firdausi, L. Damayanti, G. P. N. Hakim, and M. Alaydrus, “Design of A Dual-Bant Microstrip Antenna for 5G Communication,” Journal of Integrated and Advanced Engineering (JIAE) Vol. 1, No. 1, pp. 65-72 March 2021. http://doi.org/10.51662/jiae.v1i1.15.
  • [23]P. K. Malik and P. Tewari, “Design of UWB Antenna for the 5G Mobile Communication Applications: A Review 2020,” International Conference on Computation, Automation and Knowledge Management (ICCAKM), 2020 DOI: 10.1109/ICCAKM46823.2020.9051556.
  • [24]D. N. Elsheakh, “Reconfigurable Frequency and Steerable Beam of Monopole Antenna Based on Graphene Pads,” International Journal of RF and Microwave Computer-Aided Engineering, DOI: 10.1002/mmce.22156, 2019.
  • [25]D. Elsheakh and H. Shawkey, “5G Wideband on-chip dipole antenna for WSN soil moisture monitoring,” International Journal of Rf and Microwave Computer-aided Engineering. DOI: 10.1002/mmce.22556, 2021.
  • [26]M. K. Shereen, M. I. Khattak and G. Witjaksono, “A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications,” Journal of Computational Electronics 18: pp. 1065–1102, https://doi.org/10.1007/s10825-019-01336-0, 2019.
  • [27]A. R. Gutiérrez, A. Reyna, L.I. Balderas, M. A. Panduro and A. L. Méndez, “Non-Uniform Antenna Array with Non-Symmetric Feeding Network for 5G Applications,” IEEE Antennas and Wireless Propagation Letters, pp.346-350, DOI 10.1109/LAWP.2021.3131437, 2022.
  • [28]N. Shaik and P. K. Malik, “A comprehensive survey 5G wireless communication systems: open issues, research challenges, channel estimation, multi carrier modulation and 5G applications,” Multimedia Tools and Applications 80, pp. 28789–28827, https://doi.org/10.1007/s11042-021-11128-z, 2021.
  • [29]Y. Cheng and Y. Dong, “Wideband circularly polarized planar antenna array for 5g millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2615-2627, 2021.
  • [30]F.B. Shiddanagouda, S. P. Teja, D. P. Saritha and A. Kumar, “Hexagonal Microstrip Patch Antenna for Bio-medical Applications,” International Journal of Advanced Technology in Engineering and Science, Vol. No.5, Issue No.3 March 2017.
  • [31]B. Hossain and F. Hossain, “Design of a Triple Band Rectangular Slot Microstrip Patch Antenna for Wireless Applications,” 2020 IEEE Region 10 Symposium (TENSYMP), DOI:10.1109/TENSYMP50017.2020.9230997, 2020.
  • [32]C. A. Balanis “Antenna Theory Analysis and Design,” Third Edition, John Wiley & Sons, Inc., Publication Published by John Wiley & Sons, Inc., Hoboken, New Jersey USA. Published Simultaneously in Canada, 2005, pp. 846–847.
  • [33]P. Srinivas, K. R. Kiran, D.S. Bidichandani, S.R. Guntupalli and K.N.V.S Kishore, “Improving the Bandwidth in the Design of Phased Array Antenna”. International Journal of Recent Scientific Research, vol. 4, Issue, 3, pp. 304 -307, March, ISSN: 0976-3031, 2013.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Mutlu 0000-0001-6756-0668

Çetin Kurnaz 0000-0003-3436-899X

Yayımlanma Tarihi 26 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 5

Kaynak Göster

APA Mutlu, M., & Kurnaz, Ç. (2022). 5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı. Duzce University Journal of Science and Technology, 10(5), 52-64. https://doi.org/10.29130/dubited.1093235
AMA Mutlu M, Kurnaz Ç. 5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı. DÜBİTED. Aralık 2022;10(5):52-64. doi:10.29130/dubited.1093235
Chicago Mutlu, Mustafa, ve Çetin Kurnaz. “5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı”. Duzce University Journal of Science and Technology 10, sy. 5 (Aralık 2022): 52-64. https://doi.org/10.29130/dubited.1093235.
EndNote Mutlu M, Kurnaz Ç (01 Aralık 2022) 5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı. Duzce University Journal of Science and Technology 10 5 52–64.
IEEE M. Mutlu ve Ç. Kurnaz, “5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı”, DÜBİTED, c. 10, sy. 5, ss. 52–64, 2022, doi: 10.29130/dubited.1093235.
ISNAD Mutlu, Mustafa - Kurnaz, Çetin. “5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı”. Duzce University Journal of Science and Technology 10/5 (Aralık 2022), 52-64. https://doi.org/10.29130/dubited.1093235.
JAMA Mutlu M, Kurnaz Ç. 5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı. DÜBİTED. 2022;10:52–64.
MLA Mutlu, Mustafa ve Çetin Kurnaz. “5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı”. Duzce University Journal of Science and Technology, c. 10, sy. 5, 2022, ss. 52-64, doi:10.29130/dubited.1093235.
Vancouver Mutlu M, Kurnaz Ç. 5G Uygulamaları için Eliptik Mikroşerit Anten Tasarımı. DÜBİTED. 2022;10(5):52-64.