Investigation of Engineering Properties of Lightweight Concrete Made With the Addition of Sodium Salt Based Powder Additive
Yıl 2022,
Cilt: 10 Sayı: 5, 137 - 145, 26.12.2022
Serkan Subaşı
,
Heydar Dehghanpour
,
Betül İşbilir Kula
,
Muhammed Maraşlı
Öz
In the construction sector, which is needed for the rapidly increasing world population, the production of strong and safe buildings is given importance. This is achieved as a result of the functionality, durability and economical material production in construction materials. In order to reduce the dead load in buildings, the use of elements made of lightweight concrete is the most appropriate and alternative method. In the current study, lightweight concrete with 4 different mixtures was produced by using 0%, 0.5%, 1.5% and 2.5% powdered sodium salt-based styrene butadiene polymer admixtures (SBPA). The workability effect of the additive on the fresh mixtures was investigated by the flow table test. The 7 and 28 day compressive and flexural strengths of the obtained samples were tested. Density and porosity ratios of the samples were calculated before the 28-day compressive strength test. According to the results, it was observed that the additive material caused a slight decrease in workability. In addition, decreases were observed in mechanical strengths, but when compared with the literature, considering the decrease in density, it was understood that it is in the class of lightweight concretes
with suitable strength.
Teşekkür
We would like to thank fibrobeton company - R&D department, which sponsored this study, for their support.
Kaynakça
- [1] D.D. Double, A. Hellawell, “The Solidification of Cement,” Sci. Am. vol. 237, pp. 82–90, 1977. https://doi.org/10.1038/scientificamerican0777-82.
- [2] H.J. Cowan, “A history of masonry and concrete domes in building construction,” Build. Environ. vol. 12, pp. 1–24, 1977. https://doi.org/10.1016/0360-1323(77)90002-6.
- [3] P.K. Mehta, P.J.M. Monteiro, “Concrete Microstructure, Properties, and Materials,” McGraw- Hill Educ. pp. 1–19, 2014.
- [4] D. Fugazza, “Shape-Memory Alloy Devices in Earthquake Engineering: Mechanical Properties, Constitutive Modelling and Numerical Simulations,” Eur. Sch. Adv. Stud. Reduct. Seism. Risk. vol. 148, 2003.
- [5] K. Yildirim, M. Sumer, S. Subasi, “Hafif Beton Üretiminde Granüle Edilmiş Fındık Kabuğunun Kullanılabilirliğinin Araştırılması,” c. 2, pp. 501–511, 2018.
- [6] K.D. Raithby, F.D. Lydon, “Lightweight concrete in highway bridges,” Int. J. Cem. Compos. Light. Concr. vol. 3, pp. 133–146, 1981. https://doi.org/10.1016/0262-5075(81)90007-5.
- [7] O. Sengul, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir, “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete,” Energy Build. vol. 43, pp. 671–676, 2011. https://doi.org/10.1016/j.enbuild.2010.11.008.
- [8] I.H. Ling, D.C.L. Teo, “Properties of EPS RHA lightweight concrete bricks under different curing conditions,” Constr. Build. Mater. vol. 25, pp. 3648–3655, 2011. https://doi.org/10.1016/j.conbuildmat.2011.03.061.
- [9] K.A. Mohd Sari, A.R. Mohammed Sani, “Applications of Foamed Lightweight Concrete,”
MATEC Web Conf. 97 pp. 1–5, 2017. https://doi.org/10.1051/matecconf/20179701097.
- [10] V. Ramachandran, “Concrete Admixtures Handbook: Properties, Science and Technology,”
Noyes Puublications. pp. 1–1183, 1996.
- [11] V. Ramachandran, M. Malhotra, “Concrete Admixtures Handbook-Part 7: Superplasticizers,”
Noyes Puublications. 1984.
- [12] Ö. Ateşin, “Analyzing and Modeling the Effect of High Dosage Admixture Usage on Micro
Concrete Properties,” Eskişehir Osmangazi Univ. Inst. Sci. Technol. Dr. Thesis. pp. 1–132, 2017.
- [13] S. Chandra, B. Leif, “Lightweight Aggregate Concrete,” Noyes Puublications. pp. 1–369,
2002.
- [14] M. Gesoǧlu, T. Özturan, E. Güneyisi, “Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes,” Cem. Concr. Compos. vol. 28, pp. 598–605, 2006. https://doi.org/10.1016/j.cemconcomp.2006.04.002.
- [15] J. de Brito, R. Robles, “Recycled aggregate concrete (RAC) methodology for estimating its long-term properties,” Indian J. Eng. Mater. Sci. vol. 17, pp. 449–462, 2010.
- [16] N.U. Kockal, T. Ozturan, “Durability of lightweight concretes with lightweight fly ash aggregates,” Constr. Build. Mater. vol. 25, pp. 1430–1438, 2011. https://doi.org/10.1016/j.conbuildmat.2010.09.022.
- [17] C. Zhu, J. Niu, J. Li, C. Wan, J. Peng, “Effect of aggregate saturation degree on the freeze– thaw resistance of high performance polypropylene fiber lightweight aggregate concrete,” Constr. Build. Mater. vol, 145, pp. 367–375, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.039.
- [18] N. Narayanan, K. Ramamurthy, “Structure and properties of aerated concrete: A review,” Cem. Concr. Compos. vol. 22, pp. 321–329, 2000. https://doi.org/10.1016/S0958-9465(00)00016-0.
- [19] K.C. Hover, “Concrete mixture proportioning with water-reducing admixtures to enhance durability: A quantitative model,” Cem. Concr. Compos. vol. 20, pp. 113–119, 1998. https://doi.org/10.1016/s0958-9465(98)00002-x.
- [20] S.C.C. Bate, “Guide for structural lightweight aggregate concrete: report of ACI committee 213,” Int. J. Cem. Compos. Light. Concr. vol. 1, pp. 5–6, 1979. https://doi.org/10.1016/0262- 5075(79)90004-6.
- [21] TS EN 196-1, “Methods of testing cement–Part 1: Determination of strength,” Turkish Stand. 2005.
- [22] TS EN 1015-3, “Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table),” Turkish Stand. 2005.
- [23] Y. Wei, S. Cheng, W. Chen, Y. Lu, K. Chen, P. Wu, “Influence of various sodium salt species on formation mechanism of lightweight aggregates made from coal fly ash-based material,” Constr. Build. Mater. vol. 239, pp. 117890, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117890.
- [24] M. Olga, “Porous aggregate development for lightweight concrete,” 06008 pp. 1–9, 2020.
- [25] Z. Pavlík, M. Záleská, M. Pavlíková, J. Pokorny, C. Robert, “Structural , mechanical and
hygrothermal properties of lightweight concrete based on the application of waste plastics,” vol. 180, pp. 1–11, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.250.
- [26] M. Doʇan, A. Bideci, “Effect of Styrene Butadiene Copolymer (SBR) admixture on high strength concrete,” Constr. Build. Mater. vol. 112, pp. 378–385, 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.204.
- [27] A. BİDECİ, M. DOĞAN, B. ÇOMAK, Ö.S. BİDECİ, E. BESLİ, “Stiren-Bütadien Kopolimer Katkısının Çimento Harçlarına Etkisi,” Düzce Üniversitesi Bilim ve Teknol. Derg. c. 4, pp. 67–76, 2016. http://dergipark.gov.tr/dubited/issue/24381/258449.
- [28] J.A. Bogas, A. Gomes, M.F.C. Pereira, “Self-compacting lightweight concrete produced with expanded clay aggregate,” Constr. Build. Mater., vol. 35, pp. 1013–1022, 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.111.
- [29] S.T. Tassew, A.S. Lubell, “Mechanical properties of lightweight ceramic concrete,” pp. 561– 574, 2012. https://doi.org/10.1617/s11527-011-9782-1.
Sodyum tuzu esaslı toz katkı ilavesi ile üretilen hafif betonların mühendislik özelliklerinin araştırılması
Yıl 2022,
Cilt: 10 Sayı: 5, 137 - 145, 26.12.2022
Serkan Subaşı
,
Heydar Dehghanpour
,
Betül İşbilir Kula
,
Muhammed Maraşlı
Öz
Hızla artan dünya nüfusu için ihtiyaç duyulan inşaat sektöründe, güçlü ve güvenli binaların üretimine önem verilmektedir. Bu, yapı malzemelerinde işlevsellik, dayanıklılık ve ekonomik malzeme üretimi sonucunda elde edilmektedir. Binalarda ölü yükü azaltmak için hafif betondan yapılmış elemanların kullanılması en uygun ve alternatif yöntemdir. Bu çalışmada %0, %0,5, %1,5 ve %2,5 sodyum tuzu bazlı stiren bütadien polimer katkıları (SBPA) kullanılarak 4 farklı karışımla hafif beton üretilmiştir. Katkı maddesinin taze karışımlar üzerindeki işlenebilirlik etkisi yayılma tablosu testi ile araştırılmıştır. Elde edilen numunelerin 7 ve 28 günlük basınç ve eğilme dayanımları test edilmiştir. 28 günlük basınç dayanımı testinden önce numunelerin yoğunluk ve gözeneklilik oranları hesaplanmıştır. Elde edilen sonuçlara göre katkı maddesinin işlenebilirlikte bir miktar azalmaya neden olduğu gözlemlenmiştir. Ayrıca mekanik dayanımlarda azalmalar gözlenmiş ancak literatürle karşılaştırıldığında yoğunluktaki azalma dikkate alındığında uygun dayanımlara sahip hafif betonlar sınıfında olduğu anlaşılmıştır.
Kaynakça
- [1] D.D. Double, A. Hellawell, “The Solidification of Cement,” Sci. Am. vol. 237, pp. 82–90, 1977. https://doi.org/10.1038/scientificamerican0777-82.
- [2] H.J. Cowan, “A history of masonry and concrete domes in building construction,” Build. Environ. vol. 12, pp. 1–24, 1977. https://doi.org/10.1016/0360-1323(77)90002-6.
- [3] P.K. Mehta, P.J.M. Monteiro, “Concrete Microstructure, Properties, and Materials,” McGraw- Hill Educ. pp. 1–19, 2014.
- [4] D. Fugazza, “Shape-Memory Alloy Devices in Earthquake Engineering: Mechanical Properties, Constitutive Modelling and Numerical Simulations,” Eur. Sch. Adv. Stud. Reduct. Seism. Risk. vol. 148, 2003.
- [5] K. Yildirim, M. Sumer, S. Subasi, “Hafif Beton Üretiminde Granüle Edilmiş Fındık Kabuğunun Kullanılabilirliğinin Araştırılması,” c. 2, pp. 501–511, 2018.
- [6] K.D. Raithby, F.D. Lydon, “Lightweight concrete in highway bridges,” Int. J. Cem. Compos. Light. Concr. vol. 3, pp. 133–146, 1981. https://doi.org/10.1016/0262-5075(81)90007-5.
- [7] O. Sengul, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir, “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete,” Energy Build. vol. 43, pp. 671–676, 2011. https://doi.org/10.1016/j.enbuild.2010.11.008.
- [8] I.H. Ling, D.C.L. Teo, “Properties of EPS RHA lightweight concrete bricks under different curing conditions,” Constr. Build. Mater. vol. 25, pp. 3648–3655, 2011. https://doi.org/10.1016/j.conbuildmat.2011.03.061.
- [9] K.A. Mohd Sari, A.R. Mohammed Sani, “Applications of Foamed Lightweight Concrete,”
MATEC Web Conf. 97 pp. 1–5, 2017. https://doi.org/10.1051/matecconf/20179701097.
- [10] V. Ramachandran, “Concrete Admixtures Handbook: Properties, Science and Technology,”
Noyes Puublications. pp. 1–1183, 1996.
- [11] V. Ramachandran, M. Malhotra, “Concrete Admixtures Handbook-Part 7: Superplasticizers,”
Noyes Puublications. 1984.
- [12] Ö. Ateşin, “Analyzing and Modeling the Effect of High Dosage Admixture Usage on Micro
Concrete Properties,” Eskişehir Osmangazi Univ. Inst. Sci. Technol. Dr. Thesis. pp. 1–132, 2017.
- [13] S. Chandra, B. Leif, “Lightweight Aggregate Concrete,” Noyes Puublications. pp. 1–369,
2002.
- [14] M. Gesoǧlu, T. Özturan, E. Güneyisi, “Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes,” Cem. Concr. Compos. vol. 28, pp. 598–605, 2006. https://doi.org/10.1016/j.cemconcomp.2006.04.002.
- [15] J. de Brito, R. Robles, “Recycled aggregate concrete (RAC) methodology for estimating its long-term properties,” Indian J. Eng. Mater. Sci. vol. 17, pp. 449–462, 2010.
- [16] N.U. Kockal, T. Ozturan, “Durability of lightweight concretes with lightweight fly ash aggregates,” Constr. Build. Mater. vol. 25, pp. 1430–1438, 2011. https://doi.org/10.1016/j.conbuildmat.2010.09.022.
- [17] C. Zhu, J. Niu, J. Li, C. Wan, J. Peng, “Effect of aggregate saturation degree on the freeze– thaw resistance of high performance polypropylene fiber lightweight aggregate concrete,” Constr. Build. Mater. vol, 145, pp. 367–375, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.039.
- [18] N. Narayanan, K. Ramamurthy, “Structure and properties of aerated concrete: A review,” Cem. Concr. Compos. vol. 22, pp. 321–329, 2000. https://doi.org/10.1016/S0958-9465(00)00016-0.
- [19] K.C. Hover, “Concrete mixture proportioning with water-reducing admixtures to enhance durability: A quantitative model,” Cem. Concr. Compos. vol. 20, pp. 113–119, 1998. https://doi.org/10.1016/s0958-9465(98)00002-x.
- [20] S.C.C. Bate, “Guide for structural lightweight aggregate concrete: report of ACI committee 213,” Int. J. Cem. Compos. Light. Concr. vol. 1, pp. 5–6, 1979. https://doi.org/10.1016/0262- 5075(79)90004-6.
- [21] TS EN 196-1, “Methods of testing cement–Part 1: Determination of strength,” Turkish Stand. 2005.
- [22] TS EN 1015-3, “Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table),” Turkish Stand. 2005.
- [23] Y. Wei, S. Cheng, W. Chen, Y. Lu, K. Chen, P. Wu, “Influence of various sodium salt species on formation mechanism of lightweight aggregates made from coal fly ash-based material,” Constr. Build. Mater. vol. 239, pp. 117890, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117890.
- [24] M. Olga, “Porous aggregate development for lightweight concrete,” 06008 pp. 1–9, 2020.
- [25] Z. Pavlík, M. Záleská, M. Pavlíková, J. Pokorny, C. Robert, “Structural , mechanical and
hygrothermal properties of lightweight concrete based on the application of waste plastics,” vol. 180, pp. 1–11, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.250.
- [26] M. Doʇan, A. Bideci, “Effect of Styrene Butadiene Copolymer (SBR) admixture on high strength concrete,” Constr. Build. Mater. vol. 112, pp. 378–385, 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.204.
- [27] A. BİDECİ, M. DOĞAN, B. ÇOMAK, Ö.S. BİDECİ, E. BESLİ, “Stiren-Bütadien Kopolimer Katkısının Çimento Harçlarına Etkisi,” Düzce Üniversitesi Bilim ve Teknol. Derg. c. 4, pp. 67–76, 2016. http://dergipark.gov.tr/dubited/issue/24381/258449.
- [28] J.A. Bogas, A. Gomes, M.F.C. Pereira, “Self-compacting lightweight concrete produced with expanded clay aggregate,” Constr. Build. Mater., vol. 35, pp. 1013–1022, 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.111.
- [29] S.T. Tassew, A.S. Lubell, “Mechanical properties of lightweight ceramic concrete,” pp. 561– 574, 2012. https://doi.org/10.1617/s11527-011-9782-1.