Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics

Yıl 2023, Cilt: 11 Sayı: 2, 908 - 921, 30.04.2023
https://doi.org/10.29130/dubited.1061673

Öz

Intracranial aneurysm is the enlargement of an artery in the brain which may lead to rupture and result in serious health disorders. The exact mechanism of aneurysm formation is still unclear; however, the disturbed hemodynamics take part in the initiation of the vessel enlargement. In this study, a simplified intracranial aneurysm is numerically investigated to elucidate the disturbed flow conditions and the generated sound on the aneurysm wall. In order to determine the generated sound, the pressure fluctuations on the inner wall are obtained using computational fluid dynamics simulations. Large eddy simulation model is employed to find the unsteady flow pressures. The results indicate that the sound levels increase at the proximity of the intracranial aneurysm. The sound levels on the aneurysm are compared to the sound levels on the sites with normal vessel diameter, and it is seen that the aneurysm results in about 10 dB increase in the sound generation. This relative increase in the flow-generated sound is important in terms of the diagnosis of the intracranial aneurysms, which can be used as a diagnostic tool for the early detection of the aneurysm before facing with the serious symptoms.

Destekleyen Kurum

TÜBİTAK - TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU

Proje Numarası

221M001

Teşekkür

This study is funded by TÜBİTAK (The Scientific and Technological Research Council of Türkiye) 3501 – Career Development Program (Project number: 221M001).

Kaynakça

  • [1] P. S. Amenta, S. Yadla, P. G. Campbell, M. G. Maltenfort, S. Dey, S. Ghosh, M. S. Ali, J. I. Jallo, S. I. Tjoumakaris, L. F. Gonzalez, A. S. Dumont, R. H. Rosenwasser, P. M. Jabbour, “Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort,” Neurosurgery, vol. 70, no. 1, pp. 693–701, 2012.
  • [2] H. Asgharzadeh, H. Asadi, H. Meng, I. Borazjani, “A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries,” Physics of Fluids, vol. 31, no. 3, pp. 031905, 2019.
  • [3] J. J. Chiu, S. Chien, “Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives,” Physiological Reviews, vol. 91, no. 1, pp. 327–387, 2011.
  • [4] J. D. Humphrey, “Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels,” Cell Biochemistry and Biophysics, vol. 50, no. 2, pp. 53–78, 2008.
  • [5] J. M. Dolan, J. Kolega, H. Meng, “High wall shear stress and spatial gradients in vascular pathology: a review,” Annals of Biomedical Engineering, vol. 41, no. 7, pp. 1411–1427, 2013.
  • [6] H. E. Salman, B. Ramazanli, M. M. Yavuz, H. C. Yalcin, “Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques,” Frontiers in bioengineering and biotechnology, vol. 7, pp. 111, 2019.
  • [7] J. C. Lasheras, “The biomechanics of arterial aneurysms,” Annual Review of Fluid Mechanics, vol. 39, no. 1, pp. 293–319, 2007.
  • [8] D. M. Sforza, C. M. Putman, J. R. Cebral, “Hemodynamics of cerebral aneurysms,” Annual Review of Fluid Mechanics, vol. 41, no. 1, pp. 91–107, 2009.
  • [9] T. Hassan, E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, T. Yoshimoto, “Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3D image-based computational fluid dynamics,” American Journal of Neuroradiology, vol. 24, no. 6, pp. 1075–1082, 2003.
  • [10] H. E. Salman, Y. Yazicioglu, “Flow-induced vibration of constricted artery models with surrounding soft tissue,” The Journal of the Acoustical Society of America, vol. 142, no. 4, pp. 1913-1925, 2017.
  • [11] H. E. Salman, C. Sert, Y. Yazicioglu, “Computational analysis of high frequency fluid-structure interactions in constricted flow.” Computers & Structures, vol. 122, pp. 145-154, 2013.
  • [12] K. Ozden, C. Sert, Y. Yazicioglu, “Numerical investigation of wall pressure fluctuations downstream of concentric and eccentric blunt stenosis models,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, no. 1, pp. 48-60, 2020.
  • [13] H. Asgharzadeh, I. Borazjani, “Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms,” Computational and mathematical methods in medicine, vol. 2016, 2016.
  • [14] K. M. Saqr, S. Rashad, S. Tupin, K. Niizuma, T. Hassan, T. Tominaga, M. Ohta, “What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review,” Journal of Cerebral Blood Flow & Metabolism, vol. 40, no. 5, pp. 1021-1039, 2020.
  • [15] H. Asgharzadeh, H. Asadi, H. Meng, I. Borazjani, “A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries,” Physics of Fluids, vol 31, no. 3, pp. 031905, 2019.
  • [16] H. Zhang, X. Zhang, S. Ji, Y. Guo, G. Ledezma, N. Elabbasi, H. deCougny, “Recent development of fluid–structure interaction capabilities in the ADINA system,” Computers & Structures, vol. 81, no. 8-11, pp. 1071–1085, 2003.
  • [17] C. M. Scotti, E. A. Finol, “Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study”, Computers & Structures, vol. 85, no. 11-14, pp. 1097–1113, 2007.
  • [18] M. M. Molla, M. C. Paul, “LES of non-Newtonian physiological blood flow in a model of arterial stenosis,” Medical Engineering & Physics, vol. 34, no. 8, pp. 1079-1087, 2012.
  • [19] S. R. Krishnan, C. S. Seelamantula, “On the selection of optimum Savitzky-Golay filters,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 380-391, 2012.
  • [20] J. Bernsdorf, D. Wang, “Non-Newtonian blood flow simulation in cerebral aneurysms,” Computers & Mathematics with Applications, vol. 58, no. 5, pp. 1024-1029, 2009.

İntrakraniyal Anevrizma Üzerinde Oluşan Sesin Hesaplamalı Akışkanlar Dinamiği Kullanılarak Sayısal Modellenmesi

Yıl 2023, Cilt: 11 Sayı: 2, 908 - 921, 30.04.2023
https://doi.org/10.29130/dubited.1061673

Öz

İntrakraniyal anevrizma, beyindeki bir arterin yırtılmasına ve ciddi sağlık bozukluklarına yol açabilecek bir damar genişlemesidir. Anevrizma oluşumunun kesin nedenleri hala belirsizdir; ancak bozulmuş hemodinamik parametreler ve kan akış koşullarındaki anormallikler damar genişlemesinin başlamasında rol oynar. Bu çalışmada, bozulmuş akış koşullarını ve anevrizma duvarında oluşan sesi incelemek için basitleştirilmiş bir intrakraniyal anevrizma modeli kullanılmıştır. Anevrizmaya bağlı olarak oluşan sesi belirlemek için, hesaplamalı akışkanlar dinamiği simülasyonları kullanılmış ve iç damar duvarındaki basınç dalgalanmaları incelenmiştir. Kararsız akış basınçlarını bulmak için büyük girdap benzeşimi modelleri kullanılmıştır. Sayısal akış simülasyonlarının sonuçları, anevrizma yakınındaki bölgelerde oluşan ses seviyelerinin arttığını göstermektedir. Anevrizma üzerindeki ses seviyeleri, normal damar çapına sahip bölgelerdeki ses seviyeleri ile karşılaştırıldığında, anevrizmanın ses oluşumunda 10 dB civarında bir artışa neden olduğu görülmektedir. Akış kaynaklı sesteki bu göreceli artışın, ciddi semptomlarla karşılaşmadan önce intrakraniyal anevrizmaların teşhisi açısından önemli olduğu öngörülmektedir.

Proje Numarası

221M001

Kaynakça

  • [1] P. S. Amenta, S. Yadla, P. G. Campbell, M. G. Maltenfort, S. Dey, S. Ghosh, M. S. Ali, J. I. Jallo, S. I. Tjoumakaris, L. F. Gonzalez, A. S. Dumont, R. H. Rosenwasser, P. M. Jabbour, “Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort,” Neurosurgery, vol. 70, no. 1, pp. 693–701, 2012.
  • [2] H. Asgharzadeh, H. Asadi, H. Meng, I. Borazjani, “A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries,” Physics of Fluids, vol. 31, no. 3, pp. 031905, 2019.
  • [3] J. J. Chiu, S. Chien, “Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives,” Physiological Reviews, vol. 91, no. 1, pp. 327–387, 2011.
  • [4] J. D. Humphrey, “Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels,” Cell Biochemistry and Biophysics, vol. 50, no. 2, pp. 53–78, 2008.
  • [5] J. M. Dolan, J. Kolega, H. Meng, “High wall shear stress and spatial gradients in vascular pathology: a review,” Annals of Biomedical Engineering, vol. 41, no. 7, pp. 1411–1427, 2013.
  • [6] H. E. Salman, B. Ramazanli, M. M. Yavuz, H. C. Yalcin, “Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques,” Frontiers in bioengineering and biotechnology, vol. 7, pp. 111, 2019.
  • [7] J. C. Lasheras, “The biomechanics of arterial aneurysms,” Annual Review of Fluid Mechanics, vol. 39, no. 1, pp. 293–319, 2007.
  • [8] D. M. Sforza, C. M. Putman, J. R. Cebral, “Hemodynamics of cerebral aneurysms,” Annual Review of Fluid Mechanics, vol. 41, no. 1, pp. 91–107, 2009.
  • [9] T. Hassan, E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, T. Yoshimoto, “Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3D image-based computational fluid dynamics,” American Journal of Neuroradiology, vol. 24, no. 6, pp. 1075–1082, 2003.
  • [10] H. E. Salman, Y. Yazicioglu, “Flow-induced vibration of constricted artery models with surrounding soft tissue,” The Journal of the Acoustical Society of America, vol. 142, no. 4, pp. 1913-1925, 2017.
  • [11] H. E. Salman, C. Sert, Y. Yazicioglu, “Computational analysis of high frequency fluid-structure interactions in constricted flow.” Computers & Structures, vol. 122, pp. 145-154, 2013.
  • [12] K. Ozden, C. Sert, Y. Yazicioglu, “Numerical investigation of wall pressure fluctuations downstream of concentric and eccentric blunt stenosis models,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, no. 1, pp. 48-60, 2020.
  • [13] H. Asgharzadeh, I. Borazjani, “Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms,” Computational and mathematical methods in medicine, vol. 2016, 2016.
  • [14] K. M. Saqr, S. Rashad, S. Tupin, K. Niizuma, T. Hassan, T. Tominaga, M. Ohta, “What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review,” Journal of Cerebral Blood Flow & Metabolism, vol. 40, no. 5, pp. 1021-1039, 2020.
  • [15] H. Asgharzadeh, H. Asadi, H. Meng, I. Borazjani, “A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries,” Physics of Fluids, vol 31, no. 3, pp. 031905, 2019.
  • [16] H. Zhang, X. Zhang, S. Ji, Y. Guo, G. Ledezma, N. Elabbasi, H. deCougny, “Recent development of fluid–structure interaction capabilities in the ADINA system,” Computers & Structures, vol. 81, no. 8-11, pp. 1071–1085, 2003.
  • [17] C. M. Scotti, E. A. Finol, “Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study”, Computers & Structures, vol. 85, no. 11-14, pp. 1097–1113, 2007.
  • [18] M. M. Molla, M. C. Paul, “LES of non-Newtonian physiological blood flow in a model of arterial stenosis,” Medical Engineering & Physics, vol. 34, no. 8, pp. 1079-1087, 2012.
  • [19] S. R. Krishnan, C. S. Seelamantula, “On the selection of optimum Savitzky-Golay filters,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 380-391, 2012.
  • [20] J. Bernsdorf, D. Wang, “Non-Newtonian blood flow simulation in cerebral aneurysms,” Computers & Mathematics with Applications, vol. 58, no. 5, pp. 1024-1029, 2009.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüseyin Enes Salman 0000-0001-7572-9902

Proje Numarası 221M001
Yayımlanma Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Salman, H. E. (2023). Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics. Duzce University Journal of Science and Technology, 11(2), 908-921. https://doi.org/10.29130/dubited.1061673
AMA Salman HE. Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics. DÜBİTED. Nisan 2023;11(2):908-921. doi:10.29130/dubited.1061673
Chicago Salman, Hüseyin Enes. “Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics”. Duzce University Journal of Science and Technology 11, sy. 2 (Nisan 2023): 908-21. https://doi.org/10.29130/dubited.1061673.
EndNote Salman HE (01 Nisan 2023) Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics. Duzce University Journal of Science and Technology 11 2 908–921.
IEEE H. E. Salman, “Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics”, DÜBİTED, c. 11, sy. 2, ss. 908–921, 2023, doi: 10.29130/dubited.1061673.
ISNAD Salman, Hüseyin Enes. “Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics”. Duzce University Journal of Science and Technology 11/2 (Nisan 2023), 908-921. https://doi.org/10.29130/dubited.1061673.
JAMA Salman HE. Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics. DÜBİTED. 2023;11:908–921.
MLA Salman, Hüseyin Enes. “Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics”. Duzce University Journal of Science and Technology, c. 11, sy. 2, 2023, ss. 908-21, doi:10.29130/dubited.1061673.
Vancouver Salman HE. Numerical Modeling of the Sound Generated on an Intracranial Aneurysm Using Computational Fluid Dynamics. DÜBİTED. 2023;11(2):908-21.