Derleme
BibTex RIS Kaynak Göster

Derleme: Elektroaktif Polimerler

Yıl 2023, Cilt: 11 Sayı: 2, 607 - 624, 30.04.2023
https://doi.org/10.29130/dubited.1071302

Öz

Bu çalışmada akıllı malzemelerinden biri olan elektroaktif polimerlerin çeşitleri, yapıları, çalışma mekanizmaları ve kullanım alanları tanıtılmıştır. Akıllı malzemelere duyulan ihtiyaç geleneksel aktüatörlerden farkı ortaya konarak açıklanmıştır. Elektroaktif polimerlerin tarihsel gelişimi, ilk ticari ürünü, çalışma mekanizması, uygulama alanları ve çeşitleri hakkında ayrıntılı bilgi verilmiştir. Elektronik ve iyonik elektroaktif polimer çeşitleri ayrıntılı bir şekilde ele alınarak okuyucuya malzemeleri kolayca karşılaştırabilme imkanı tanınmıştır. Bu derleme ile Türkçe literatüre elektroaktif polimerler ile ilgili temel bir kaynak kazandırılması hedeflenmiştir.

Destekleyen Kurum

Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2018.KB.FEN.025

Teşekkür

Bu çalışma Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 2018.KB.FEN.025).

Kaynakça

  • [1] Q. Li, C. Liu, Y. H. Lin, L. Liu, K. Jiang, and S. Fan, “Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets,” ACS Nano, vol. 9, no. 1, pp. 409–418, 2015.
  • [2] J. D. W. Madden, N.A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S.R. Lafontaine, P. A. Wieringa, I. W. Hunter, “Artificial muscle technology: Physical principles and navalprospects,” IEEE J. Ocean. Eng., 2003, doi: 10.1109/JOE.2004.833135.
  • [3] C. M. de O. Ribeiro, “Processing and characterization of piezoelectric polymers for tissue engineering applications,” Universidade do Minho, 2012.
  • [4] R. Shankar, T. K. Ghosh, and R. J. Spontak, “Dielectric elastomers as next-generation polymeric actuators,” Soft Matter, vol. 3, no. 9, p. 1116, 2007.
  • [5] R. Shankar, T. K. Ghosh, and R. J. Spontak, “Mechanical and actuation behavior of electroactive nanostructured polymers,” Sensors Actuators, A Phys., vol. 151, pp. 46–52, 2009.
  • [6] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality, Potential, and Challenges, 2nd ed. Washington: Spie Press, 2004.
  • [7] W. C. Roentgen, “About the changes in shape and volume of dielectrics caused by electricity,” Annu. Phys. ans Chem. Ser., vol. 11, pp. 771–786, 1880.
  • [8] M. Eguchi, “On the Permanent Electret,” Philos. Mag., vol. 49, p. 178, 1925.
  • [9] Y. Bar-Cohen, “Current and future developments in artificial muscles using electroactive polymers,” Expert Rev. Med. Devices, vol. 6, pp. 731–740, 2005. [10] D. W. Richerson and W. E. Lee, Modern Ceramic Engineering Properties, Processing, and Use in Design, 4th ed. CRC Press Taylor&Francis Group, 2018.
  • [11] V. Finkenstadt and J. L. Willett, “Preparation and characterization of electroactive biopolymers,” Macromol. Symp., vol. 227, pp. 367–371, 2005.
  • [12] R. D. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, “High-field electrostriction of elastomeric polymer dielectrics for actuation,” in SPIE Conference on Electroactive Polymer Actuators and Devices, 1999, pp. 149–161.
  • [13] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%,” Science (80-. )., vol. 287, pp. 836–839, 2000.
  • [14] K. Ren, “Approaches to Achieve Smarter Electroactive Materials and Devices,” The Pennsylvania State University, 2007.
  • [15] Z. Y. Cheng, V. Bharti, T. B. Xu, H. Xu, T. Mai, and Q. M. Zhang, “Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers,” Sensors Actuators, A Phys., vol. 90, pp. 138 147, 2001.
  • [16] A. F. Kanaan, A. C. Pinho, and A. P. Piedade, “Electroactive polymers obtained by conventional and non-conventional technologies,” Polymers, vol. 13, no. 16. MDPI AG, Aug. 02, 2021.
  • [17] M. H. Rahman, H. Werth, A. Goldman, Y. Hida, C. Diesner, L. Lane, P. L. Menezes, “Recent Progress on Electroactive Polymers: Synthesis, Properties and Applications,” Ceramics, vol. 4, no. 3, pp. 516–541, Sep. 2021, doi: 10.3390/ceramics4030038.
  • [18] B. S. Akdemir and I. M. Kusoglu, “Effect of curing conditions and batio3 nanoparticle addition on dielectric constant of pdms for eap applications,” Acta Phys. Pol. A, vol. 139, no. 2, pp. 145–150, Feb. 2021, doi: 10.12693/APhysPolA.139.145.
  • [19] W. Lai, “Characterization, fabrication, and analysis of soft dielectric elastomer actuators capable of complex 3D deformation,” Iowa State University, 2015.
  • [20] Y. Wang and T. Sugino, “Ionic Polymer Actuators: Principle, Fabrication and Applications,” in Actuators, InTech, 2018.
  • [21] J. Yip, L. S. Feng, C. W. Hang, Y. C. W. Marcus, and K. C. Wai, “Experimentally validated improvement of IPMC performance through alternation of pretreatment and electroless plating processes,” Smart Mater. Struct., vol. 20, no. 1, 2011.
  • [22] P. Rinne, I. Põldsalu, H. K. Ratas, K. Kruusamäe, U. Johanson, T. Tamm, K. Põhako-Esko, A. Punning, A. L. Peikolainen, F. Kaasik, I. Must, D. van den Ende, A. Aabloo, “Fabrication of carbon-based ionic electromechanically active soft actuators,” J. Vis. Exp., vol. 2020, no. 158, Apr. 2020, doi: 10.3791/61216.
  • [23] S. Ramírez-García and D. Diamond, “Biomimetic, low power pumps based on soft actuators,” Sensors Actuators, A Phys., vol. 135, no. 1, pp. 229–235, 2007.
  • [24] N. Terasawa, “High-performance transparent actuator made from Poly(dimethylsiloxane)/Ionic liquid gel,” Sensors Actuators, B Chem., vol. 257, pp. 815–819, 2018.
  • [25] J. Tang, X. Wen, Z. Liu, J. Wang, and P. Zhang, “Synthesis and electrorheological performances of 2D PANI/TiO2 nanosheets,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 552, pp. 24–31, 2018.
  • [26] J. T. Godfrey, “Soft Robotic Actuators,” University of California, Irvine, 2017.
  • [27] Y. Ozsecen, “Dielectric electroactive polymer based biomedical devices: control, sensing and interfacing,” Northeastern University, 2010.
  • [28] J. Chen, Y. Zhu, Z. Guo, and A. G. Nasibulin, “Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors,” Engineered Science, vol. 12. Engineered Science Publisher, pp. 13–22, 2020.
  • [29] X. X. Wang, G. F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y. Z. Long, “Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications,” Progress in Materials Science, vol. 115. Elsevier Ltd, 2021. [30] J. Chen, Y. Zhu, J. Huang, J. Zhang, D. Pan, J. Zhou, J. E. Ryu, A. Umar, Z. Guo, “Advances in Responsively Conductive Polymer Composites and Sensing Applications,” Polym. Rev., vol. 61, no. 1, pp. 157–193, 2021.
  • [31] N. Mahato, H. Jang, A. Dhyani, and S. Cho, “Recent progress in conducting polymers for hydrogen storage and fuel cell applications,” Polymers, vol. 12, no. 11. MDPI AG, pp. 1–40, 2020. [32] J. Najem, S. A. Sarles, B. Akle, and D. J. Leo, “Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators,” Smart Mater. Struct., 2012. [33] D. Zhao, J. Ru, T. Wang, Y. Wang, and L. Chang, “Performance Enhancement of Ionic Polymer-Metal Composite Actuators with Polyethylene Oxide,” Polymers (Basel)., vol. 14, no. 1, p. 80, 2021.
  • [34] T. P. Stalbaum, “Ionic electroactive polymer devices: physics-based modeling with experimental investigation and verification,” University of Nevada, Las Vegas, 2016.
  • [35] V. Palmre, J. J. Hubbard, M. Fleming, D. Pugal, S. Kim, K. J. Kim, K. K. Leang, “An IPMC-enabled bio-inspired bending/twisting fin for underwater applications,” Smart Mater. Struct., vol. 22, p. 014003, 2013, doi: 10.1088/0964-1726/22/1/014003.
  • [36] Z. J. Olsen, K. J. Kim, and I. K. Oh, “Developing next generation ionic polymer–metal composite materials: perspectives for enabling robotics and biomimetics,” Polym. Int., vol. 70, no. 1, pp. 7–9, 2021.
  • [37] D. K. Biswal, B. R. Moharana, and T. P. Mohapatra, “Bending response optimization of an ionic polymer-metal composite actuator using orthogonal array method,” Mater. Today Proc., vol. 49, pp. 1550–1555, 2022.
  • [38] V. Panwar, L. S. Panwar, G. Anoop, and S. Park, “Electronic-ionic polymer composite for high output voltage generation,” Compos. Part B Eng., vol. 232, p. 109601, 2022.
  • [39] M. Doi, M. Matsumoto, and Y. Hirose, “Deformation of Ionic Polymer Gels by Electric Fields,” Macromolecules, vol. 25, pp. 5504–5511, 1992.
  • [40] C. Jo, H. E. Naguib, and R. H. Kwon, “Fabrication, modeling and optimization of an ionic polymer gel actuator,” Smart Mater. Struct., vol. 20, p. 045006, 2011.
  • [41] X. Zen L. Dong, J. Fu, L. Chen, J. Zhou, P. Zong, G. Liu, L. Shi, “Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries,” Chem. Eng. J., vol. 428,2022.
  • [42] Q. Wang, X. Xu, B. Hong, M. Bai, J. Li, Z. Zhang, Y. Lai, “Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries,” Chem. Eng. J., vol. 428, 2022.
  • [43] V. V. Kovaleva, N. M. Kuznetsov, A. P. Istomina, O. I. Bogdanova, A. Y. Vdovichenko, D. R. Streltsov, S. N. Malakhov, R. A. Kamyshinsky, S. N. Chvalun, “Low-filled suspensions of α-chitin nanorods for electrorheological applications,” Carbohydr. Polym., vol. 277, 2022.
  • [44] Y. Wang, J. Yuan, X. Zhao, and J. Yin, “Electrorheological Fluids of GO/Graphene-Based Nanoplates,” Materials (Basel)., vol. 15, no. 1, p. 311, 2022.
  • [45] K. Yu, X. Ji, T. Yuan, Y. Cheng, J. Li, X. Hu, Z. Liu, X. Zhou, L. Fang, “Robust Jumping Actuator with a Shrimp-Shell Architecture,” Adv. Mater., vol. 33, no. 44, 2021.
  • [46] W. J. Sun, Y. Guan, Y. Y. Wang, T. Wang, Y. T. Xu, W. W. Kong, L. C. Jia, D. X. Yan, Z. M. Li, “Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions,” ACS Appl. Mater. Interfaces, 2021.
  • [47] E. Cakmak, “Dielectric and Electromechanical Properties of Polyurethane and Polydimethylsiloxane Blends and Nanocomposites,” North Carolina State University, 2014.
  • [48] R.-P. Nie, W. B. Tang, Y. Li, L. C. Jia, L. Xu, H. D. Huang, J. Lei, Z. M. Li, “Surfactant-assisted fabrication of room-temperature self-healable dielectric elastomer toward actuation application,” Compos. Part B Eng., vol. 234, p. 109655, 2022.
  • [49] Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui, J. Kong, Y. Chen, “A High‐Lift Micro‐Aerial‐Robot Powered by Low‐Voltage and Long‐Endurance Dielectric Elastomer Actuators,” Adv. Mater., p. 2106757, 2022.
  • [50] F. Zhao, X. Chen, J. Zhang, X. Zhang, J. Xie, L. Jin, Z. Liu, J. Zhuang, W. Ren, Z. G. Ye, “A wearable, nozzle‑diffuser microfluidic pump based on high‑performance ferroelectric nanocomposites,” Sensors Actuators B Chem., vol. 347, 2021.
  • [51] S. Chen, M. W. M. Tan, X. Gong, and P. S. Lee, “Low‐Voltage Soft Actuators for Interactive Human–Machine Interfaces,” Adv. Intell. Syst., p. 2100075, 2021.
  • [52] J. Su and Y. Tajitsu, “Piezoelectric and Electrostrictive Polymers as EAPs: Materials,” in Electromechanically Active Polymers, Springer International Publishing, 2016, pp. 509–531.
  • [53] R. Farhan, A. Eddiai, M. Meddad, N. Chakhchaoui, M. Rguiti, and M. Mazroui, “Improvement in energy conversion of electrostrictive composite materials by new approach via piezoelectric effect: Modeling and experiments,” Polym. Adv. Technol., vol. 32, no. 1, pp. 123–130, 2021.
  • [54] E. Hansy-Staudigl and M. Krommer, “Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation,” J. Intell. Mater. Syst. Struct., vol. 32, no. 3, pp. 296–316, 2021.
  • [55] M. Li, S. Dai, X. Dong, Y. Jiang, J. Ge, Y. Xu, N. Yuan, J. Ding, “High-Strength, Large-Deformation, Dual Cross-Linking Network Liquid Crystal Elastomers Based on Quadruple Hydrogen Bonds,” Langmuir, vol. 38, no. 4, pp. 1560–1566, 2022.
  • [56] B. Gurboga, E. B. Tuncgovde, and E. Kemiklioglu, “Liquid crystal‐based elastomers in tissue engineering,” Biotechnol. Bioeng., 2022.
  • [57] Y. Wang, J. Liu, and S. Yang, “Multi-functional liquid crystal elastomer composites,” Appl. Phys. Rev., vol. 9, no. 1, p. 011301, 2022.

Review: Electroactive Polymers

Yıl 2023, Cilt: 11 Sayı: 2, 607 - 624, 30.04.2023
https://doi.org/10.29130/dubited.1071302

Öz

In this study, the types, structures, working principles and applications of electroactive polymers were introduced. The need of smart materials was explained with the addressing the difference between the commercial actuators. The detailed knowledge about the historical development, first commercial product, working principle, application and types of electroactive polymers were given. The opportunity of comparison among the electroactive polymer types was provided by discussing the electronic and ionic electroactive polymers in detail. With this review, it is aimed to provide a base reference in Turkish literature about electroactive polymers.

Proje Numarası

2018.KB.FEN.025

Kaynakça

  • [1] Q. Li, C. Liu, Y. H. Lin, L. Liu, K. Jiang, and S. Fan, “Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets,” ACS Nano, vol. 9, no. 1, pp. 409–418, 2015.
  • [2] J. D. W. Madden, N.A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S.R. Lafontaine, P. A. Wieringa, I. W. Hunter, “Artificial muscle technology: Physical principles and navalprospects,” IEEE J. Ocean. Eng., 2003, doi: 10.1109/JOE.2004.833135.
  • [3] C. M. de O. Ribeiro, “Processing and characterization of piezoelectric polymers for tissue engineering applications,” Universidade do Minho, 2012.
  • [4] R. Shankar, T. K. Ghosh, and R. J. Spontak, “Dielectric elastomers as next-generation polymeric actuators,” Soft Matter, vol. 3, no. 9, p. 1116, 2007.
  • [5] R. Shankar, T. K. Ghosh, and R. J. Spontak, “Mechanical and actuation behavior of electroactive nanostructured polymers,” Sensors Actuators, A Phys., vol. 151, pp. 46–52, 2009.
  • [6] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality, Potential, and Challenges, 2nd ed. Washington: Spie Press, 2004.
  • [7] W. C. Roentgen, “About the changes in shape and volume of dielectrics caused by electricity,” Annu. Phys. ans Chem. Ser., vol. 11, pp. 771–786, 1880.
  • [8] M. Eguchi, “On the Permanent Electret,” Philos. Mag., vol. 49, p. 178, 1925.
  • [9] Y. Bar-Cohen, “Current and future developments in artificial muscles using electroactive polymers,” Expert Rev. Med. Devices, vol. 6, pp. 731–740, 2005. [10] D. W. Richerson and W. E. Lee, Modern Ceramic Engineering Properties, Processing, and Use in Design, 4th ed. CRC Press Taylor&Francis Group, 2018.
  • [11] V. Finkenstadt and J. L. Willett, “Preparation and characterization of electroactive biopolymers,” Macromol. Symp., vol. 227, pp. 367–371, 2005.
  • [12] R. D. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, “High-field electrostriction of elastomeric polymer dielectrics for actuation,” in SPIE Conference on Electroactive Polymer Actuators and Devices, 1999, pp. 149–161.
  • [13] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%,” Science (80-. )., vol. 287, pp. 836–839, 2000.
  • [14] K. Ren, “Approaches to Achieve Smarter Electroactive Materials and Devices,” The Pennsylvania State University, 2007.
  • [15] Z. Y. Cheng, V. Bharti, T. B. Xu, H. Xu, T. Mai, and Q. M. Zhang, “Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers,” Sensors Actuators, A Phys., vol. 90, pp. 138 147, 2001.
  • [16] A. F. Kanaan, A. C. Pinho, and A. P. Piedade, “Electroactive polymers obtained by conventional and non-conventional technologies,” Polymers, vol. 13, no. 16. MDPI AG, Aug. 02, 2021.
  • [17] M. H. Rahman, H. Werth, A. Goldman, Y. Hida, C. Diesner, L. Lane, P. L. Menezes, “Recent Progress on Electroactive Polymers: Synthesis, Properties and Applications,” Ceramics, vol. 4, no. 3, pp. 516–541, Sep. 2021, doi: 10.3390/ceramics4030038.
  • [18] B. S. Akdemir and I. M. Kusoglu, “Effect of curing conditions and batio3 nanoparticle addition on dielectric constant of pdms for eap applications,” Acta Phys. Pol. A, vol. 139, no. 2, pp. 145–150, Feb. 2021, doi: 10.12693/APhysPolA.139.145.
  • [19] W. Lai, “Characterization, fabrication, and analysis of soft dielectric elastomer actuators capable of complex 3D deformation,” Iowa State University, 2015.
  • [20] Y. Wang and T. Sugino, “Ionic Polymer Actuators: Principle, Fabrication and Applications,” in Actuators, InTech, 2018.
  • [21] J. Yip, L. S. Feng, C. W. Hang, Y. C. W. Marcus, and K. C. Wai, “Experimentally validated improvement of IPMC performance through alternation of pretreatment and electroless plating processes,” Smart Mater. Struct., vol. 20, no. 1, 2011.
  • [22] P. Rinne, I. Põldsalu, H. K. Ratas, K. Kruusamäe, U. Johanson, T. Tamm, K. Põhako-Esko, A. Punning, A. L. Peikolainen, F. Kaasik, I. Must, D. van den Ende, A. Aabloo, “Fabrication of carbon-based ionic electromechanically active soft actuators,” J. Vis. Exp., vol. 2020, no. 158, Apr. 2020, doi: 10.3791/61216.
  • [23] S. Ramírez-García and D. Diamond, “Biomimetic, low power pumps based on soft actuators,” Sensors Actuators, A Phys., vol. 135, no. 1, pp. 229–235, 2007.
  • [24] N. Terasawa, “High-performance transparent actuator made from Poly(dimethylsiloxane)/Ionic liquid gel,” Sensors Actuators, B Chem., vol. 257, pp. 815–819, 2018.
  • [25] J. Tang, X. Wen, Z. Liu, J. Wang, and P. Zhang, “Synthesis and electrorheological performances of 2D PANI/TiO2 nanosheets,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 552, pp. 24–31, 2018.
  • [26] J. T. Godfrey, “Soft Robotic Actuators,” University of California, Irvine, 2017.
  • [27] Y. Ozsecen, “Dielectric electroactive polymer based biomedical devices: control, sensing and interfacing,” Northeastern University, 2010.
  • [28] J. Chen, Y. Zhu, Z. Guo, and A. G. Nasibulin, “Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors,” Engineered Science, vol. 12. Engineered Science Publisher, pp. 13–22, 2020.
  • [29] X. X. Wang, G. F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y. Z. Long, “Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications,” Progress in Materials Science, vol. 115. Elsevier Ltd, 2021. [30] J. Chen, Y. Zhu, J. Huang, J. Zhang, D. Pan, J. Zhou, J. E. Ryu, A. Umar, Z. Guo, “Advances in Responsively Conductive Polymer Composites and Sensing Applications,” Polym. Rev., vol. 61, no. 1, pp. 157–193, 2021.
  • [31] N. Mahato, H. Jang, A. Dhyani, and S. Cho, “Recent progress in conducting polymers for hydrogen storage and fuel cell applications,” Polymers, vol. 12, no. 11. MDPI AG, pp. 1–40, 2020. [32] J. Najem, S. A. Sarles, B. Akle, and D. J. Leo, “Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators,” Smart Mater. Struct., 2012. [33] D. Zhao, J. Ru, T. Wang, Y. Wang, and L. Chang, “Performance Enhancement of Ionic Polymer-Metal Composite Actuators with Polyethylene Oxide,” Polymers (Basel)., vol. 14, no. 1, p. 80, 2021.
  • [34] T. P. Stalbaum, “Ionic electroactive polymer devices: physics-based modeling with experimental investigation and verification,” University of Nevada, Las Vegas, 2016.
  • [35] V. Palmre, J. J. Hubbard, M. Fleming, D. Pugal, S. Kim, K. J. Kim, K. K. Leang, “An IPMC-enabled bio-inspired bending/twisting fin for underwater applications,” Smart Mater. Struct., vol. 22, p. 014003, 2013, doi: 10.1088/0964-1726/22/1/014003.
  • [36] Z. J. Olsen, K. J. Kim, and I. K. Oh, “Developing next generation ionic polymer–metal composite materials: perspectives for enabling robotics and biomimetics,” Polym. Int., vol. 70, no. 1, pp. 7–9, 2021.
  • [37] D. K. Biswal, B. R. Moharana, and T. P. Mohapatra, “Bending response optimization of an ionic polymer-metal composite actuator using orthogonal array method,” Mater. Today Proc., vol. 49, pp. 1550–1555, 2022.
  • [38] V. Panwar, L. S. Panwar, G. Anoop, and S. Park, “Electronic-ionic polymer composite for high output voltage generation,” Compos. Part B Eng., vol. 232, p. 109601, 2022.
  • [39] M. Doi, M. Matsumoto, and Y. Hirose, “Deformation of Ionic Polymer Gels by Electric Fields,” Macromolecules, vol. 25, pp. 5504–5511, 1992.
  • [40] C. Jo, H. E. Naguib, and R. H. Kwon, “Fabrication, modeling and optimization of an ionic polymer gel actuator,” Smart Mater. Struct., vol. 20, p. 045006, 2011.
  • [41] X. Zen L. Dong, J. Fu, L. Chen, J. Zhou, P. Zong, G. Liu, L. Shi, “Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries,” Chem. Eng. J., vol. 428,2022.
  • [42] Q. Wang, X. Xu, B. Hong, M. Bai, J. Li, Z. Zhang, Y. Lai, “Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries,” Chem. Eng. J., vol. 428, 2022.
  • [43] V. V. Kovaleva, N. M. Kuznetsov, A. P. Istomina, O. I. Bogdanova, A. Y. Vdovichenko, D. R. Streltsov, S. N. Malakhov, R. A. Kamyshinsky, S. N. Chvalun, “Low-filled suspensions of α-chitin nanorods for electrorheological applications,” Carbohydr. Polym., vol. 277, 2022.
  • [44] Y. Wang, J. Yuan, X. Zhao, and J. Yin, “Electrorheological Fluids of GO/Graphene-Based Nanoplates,” Materials (Basel)., vol. 15, no. 1, p. 311, 2022.
  • [45] K. Yu, X. Ji, T. Yuan, Y. Cheng, J. Li, X. Hu, Z. Liu, X. Zhou, L. Fang, “Robust Jumping Actuator with a Shrimp-Shell Architecture,” Adv. Mater., vol. 33, no. 44, 2021.
  • [46] W. J. Sun, Y. Guan, Y. Y. Wang, T. Wang, Y. T. Xu, W. W. Kong, L. C. Jia, D. X. Yan, Z. M. Li, “Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions,” ACS Appl. Mater. Interfaces, 2021.
  • [47] E. Cakmak, “Dielectric and Electromechanical Properties of Polyurethane and Polydimethylsiloxane Blends and Nanocomposites,” North Carolina State University, 2014.
  • [48] R.-P. Nie, W. B. Tang, Y. Li, L. C. Jia, L. Xu, H. D. Huang, J. Lei, Z. M. Li, “Surfactant-assisted fabrication of room-temperature self-healable dielectric elastomer toward actuation application,” Compos. Part B Eng., vol. 234, p. 109655, 2022.
  • [49] Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui, J. Kong, Y. Chen, “A High‐Lift Micro‐Aerial‐Robot Powered by Low‐Voltage and Long‐Endurance Dielectric Elastomer Actuators,” Adv. Mater., p. 2106757, 2022.
  • [50] F. Zhao, X. Chen, J. Zhang, X. Zhang, J. Xie, L. Jin, Z. Liu, J. Zhuang, W. Ren, Z. G. Ye, “A wearable, nozzle‑diffuser microfluidic pump based on high‑performance ferroelectric nanocomposites,” Sensors Actuators B Chem., vol. 347, 2021.
  • [51] S. Chen, M. W. M. Tan, X. Gong, and P. S. Lee, “Low‐Voltage Soft Actuators for Interactive Human–Machine Interfaces,” Adv. Intell. Syst., p. 2100075, 2021.
  • [52] J. Su and Y. Tajitsu, “Piezoelectric and Electrostrictive Polymers as EAPs: Materials,” in Electromechanically Active Polymers, Springer International Publishing, 2016, pp. 509–531.
  • [53] R. Farhan, A. Eddiai, M. Meddad, N. Chakhchaoui, M. Rguiti, and M. Mazroui, “Improvement in energy conversion of electrostrictive composite materials by new approach via piezoelectric effect: Modeling and experiments,” Polym. Adv. Technol., vol. 32, no. 1, pp. 123–130, 2021.
  • [54] E. Hansy-Staudigl and M. Krommer, “Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation,” J. Intell. Mater. Syst. Struct., vol. 32, no. 3, pp. 296–316, 2021.
  • [55] M. Li, S. Dai, X. Dong, Y. Jiang, J. Ge, Y. Xu, N. Yuan, J. Ding, “High-Strength, Large-Deformation, Dual Cross-Linking Network Liquid Crystal Elastomers Based on Quadruple Hydrogen Bonds,” Langmuir, vol. 38, no. 4, pp. 1560–1566, 2022.
  • [56] B. Gurboga, E. B. Tuncgovde, and E. Kemiklioglu, “Liquid crystal‐based elastomers in tissue engineering,” Biotechnol. Bioeng., 2022.
  • [57] Y. Wang, J. Liu, and S. Yang, “Multi-functional liquid crystal elastomer composites,” Appl. Phys. Rev., vol. 9, no. 1, p. 011301, 2022.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bahar Şölen Akdemir 0000-0001-7478-6753

İhsan Murat Kuşoğlu Bu kişi benim 0000-0002-1983-8343

Proje Numarası 2018.KB.FEN.025
Yayımlanma Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Akdemir, B. Ş., & Kuşoğlu, İ. M. (2023). Derleme: Elektroaktif Polimerler. Duzce University Journal of Science and Technology, 11(2), 607-624. https://doi.org/10.29130/dubited.1071302
AMA Akdemir BŞ, Kuşoğlu İM. Derleme: Elektroaktif Polimerler. DÜBİTED. Nisan 2023;11(2):607-624. doi:10.29130/dubited.1071302
Chicago Akdemir, Bahar Şölen, ve İhsan Murat Kuşoğlu. “Derleme: Elektroaktif Polimerler”. Duzce University Journal of Science and Technology 11, sy. 2 (Nisan 2023): 607-24. https://doi.org/10.29130/dubited.1071302.
EndNote Akdemir BŞ, Kuşoğlu İM (01 Nisan 2023) Derleme: Elektroaktif Polimerler. Duzce University Journal of Science and Technology 11 2 607–624.
IEEE B. Ş. Akdemir ve İ. M. Kuşoğlu, “Derleme: Elektroaktif Polimerler”, DÜBİTED, c. 11, sy. 2, ss. 607–624, 2023, doi: 10.29130/dubited.1071302.
ISNAD Akdemir, Bahar Şölen - Kuşoğlu, İhsan Murat. “Derleme: Elektroaktif Polimerler”. Duzce University Journal of Science and Technology 11/2 (Nisan 2023), 607-624. https://doi.org/10.29130/dubited.1071302.
JAMA Akdemir BŞ, Kuşoğlu İM. Derleme: Elektroaktif Polimerler. DÜBİTED. 2023;11:607–624.
MLA Akdemir, Bahar Şölen ve İhsan Murat Kuşoğlu. “Derleme: Elektroaktif Polimerler”. Duzce University Journal of Science and Technology, c. 11, sy. 2, 2023, ss. 607-24, doi:10.29130/dubited.1071302.
Vancouver Akdemir BŞ, Kuşoğlu İM. Derleme: Elektroaktif Polimerler. DÜBİTED. 2023;11(2):607-24.