Yüksek Performanslı Sıvı Kromatografisi-Evaporatif Işık Saçılım Dedektörü (HPLC-ELSD) aracılığı ile Bazı Çiçeklerde Bulunan Glukoz, Fruktoz ve Sukroz’un Eş Zamanlı Olarak Miktarlarının Belirlenmesi
Yıl 2023,
Cilt: 11 Sayı: 2, 990 - 997, 30.04.2023
Murat Soyseven
,
Burcu Sezgin
,
Göksel Arli
Öz
Çiçek özlerinin baskın bileşenleri arasında fruktoz, glikoz ve sukroz bulunur. Çeşitli canlılar için bu durum bitkilerle olan etkileşimde rol oynağından şeker içeriklerinin belirlenmesi önem arz etmektedir. Sıvı kromatografisi gıda, ilaç ve ziraat gibi birçok alanda maddelerin şeker içeriklerinin belirlenmesinde sıklıkla tercih edilen bir yöntemdir. Bu çalışmada Eskişehir bölgesinden toplanan 6 çiçek örneğinde bulunan şeker içerikleri HPLC-ELSD metodu ile tayin edilmiştir. Şekerlerin ayırımı Phenomenex Luna NH2 (5 µm partikül boyutu, 250 mm x 4,6 µm çap, 100 Å) özelliklerine sahip HPLC kolonu ile gerçekleştirilmiştir. Kromatografik ayırım (ACN:Su):(78:22, h/h) karışımına sahip mobil faz ile yapılmıştır. Kolon fırını sıcaklığı 30 ºC, enjeksiyon hacmi 10 μL, akış hızı 1,5 mL dk-1 olarak ayarlanmıştır. Analizler 12 dakika içinde tamamlanmıştır. Buharlaştırma sıcaklığı 40 ºC ve N2 basıncı 350 kPa olarak belirlenmiştir. ELSD sisteminde gain ve filter değerleri sırasıyla 7 ve 10 olarak ayarlanmıştır. Bitki örneklerinden ekstre edilen şeker bileşikleri belirlenen koşullar altında birbirlerinden başarılı bir şekilde ayrılmıştır. Analizi yapılan bitki numunelerinin fruktoz, glukoz ve sukroz içerikleri belirlenmiştir. Lavanta örneğinde fruktoz, glukoz ve sukroz gözlemlenirken, hanımeli bitkisinde sadece glukoz tespit edilmiştir. Aynı türe ait gül örneklerinin farklı renklerinde farklı şeker içerikleri belirlenmiştir. Uygulanan HPLC-ELSD yönteminin başka bitki örneklerinde bulunan şeker miktarının belirlenmesinde kolaylıkla kullanılabileceği söylenebilir.
Destekleyen Kurum
Anadolu Üniversitesi
Teşekkür
Yazalar Anadolu Üniversitesi Yunus Emre Sağlık Hizmetleri Meslek Yüksekokulu araştırma laboratuvarına teşekkürlerini sunar.
Kaynakça
- [1] D. N. Lindqvist, H. Æ. Pedersen, and L. H. Rasmussen, “A novel technique for determination of the fructose, glucose and sucrose distribution in nectar from orchids by HPLC-ELSD,” Journal of Chromatography B, vol. 1081-1082, pp. 126-130, 2018.
- [2] B. A. Alghamdi, E. S. Alshumrani, M. S. B. Saeed, G. M. Rawas, N. T. Alharthi, M. N. Baeshen, N. M. Helmi, M. Z. Alam, and M. Suhail, “Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets,” Saudi Journal of Biological Skiences, vol. 27, no. 12, pp. 3720-3726, 2020.
- [3] Y. Lu, S. Guo, F. Zhang, H. Yan, D.-w. Qian, E.-x. Shang, H.-q. Wang, and J.-a. Duan, “Nutritional components characterization of Goji berries from different regions in China,” Journal of Pharmaceutical and Biomedical Analysis, vol. 195, pp. 113859, 2021.
- [4] S. A. Corbet, “Nectar sugar content: estimating standing crop and secretion rate in the field,” Apidologie, 34, no. 1, pp. 1-10, 2003.
- [5] A. A. Madden, M. J. Epp, T. Fukami, R. E. Irwin, J. Sheppard, D. M. Sorger, & R. R. Dunn, “The ecology of insect–yeast relationships and its relevance to human industry,”. Proceedings of the Royal Society B: Biological Sciences, vol. 285, no. 1875, 2018.
- [6] L. Bestea, A. Réjaud, J. C. Sandoz, J. Carcaud, M. Giurfa, & M. G. de Brito Sanchez, “Peripheral taste detection in honey bees: What do taste receptors respond to?,” European Journal of Neuroscience, vol. 54, no. 2, pp. 4417-4444, 2021.
- [7] National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 107526, D(+)-Glucose. Retrieved February 23, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/aldehydo-D-glucose.
- [8] National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 2723872, D-Fructose. Retrieved February 23, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/fructose.
- [9] National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5988, Sucrose. Retrieved February 23, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Sucrose.
- [10] M. Grembecka, A. Lebiedzińska, and P. Szefer, “Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector,” Microchemical Journal, vol. 117, pp. 77-82, 2014.
- [11] I. Jalaludin, and J. Kim, “Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars,” Food Chemistry, pp. 130514, 2021.
- [12] A. A. Ghfar, S. M. Wabaidur, A. Y. B. H. Ahmed, Z. A. Alothman, M. R. Khan, and N. H. Al-Shaalan, “Simultaneous determination of monosaccharides and oligosaccharides in dates using liquid chromatography–electrospray ionization mass spectrometry,” Food Chemistry, vol. 176, pp. 487-492, 2015.
- [13] X. Wu, W. Jiang, J. Lu, Y. Yu, and B. Wu, “Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry,” Food Chemistry, vol. 145, pp. 976-983, 2014.
- [14] S. Sun, H. Wang, J. Xie, and Y. Su, “Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: comparison of HPLC–ELSD, LC–ESI–MS/MS and GC–MS,” Chemistry Central Journal, vol. 10, no. 1, pp. 25, 2016.
- [15] J. Dai, Y. Wu, S.-w. Chen, S. Zhu, H.-p. Yin, M. Wang, and J. Tang, “Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone,” Carbohydrate Polymers, vol. 82, no. 3, pp. 629-635, 2010.
- [16] P. Shanmugavelan, S. Y. Kim, J. B. Kim, H. W. Kim, S. M. Cho, S. N. Kim, S. Y. Kim, Y. S. Cho, and H. R. Kim, “Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD,” Carbohydrate Research, vol. 380, pp. 112-117, 2013.
- [17] M. Lafosse, M. Dreux, and L. Morinallory, “Application Fields of A New Evaporative Light-Scattering Detector for High-Performance Liquid-Chromatography and Supercritical Fluid Chromatography,” Journal of Chromatography, Vol. 404, no. 1, pp. 95-105, 1987.
- [18] Y. Mengerink, H. De Man, and S. Van Der Wal, “Use of an evaporative light scattering detector in reversed-phase high-performance liquid chromatography of oligomeric surfactants,” Journal of Chromatography A, vol. 552, pp. 593-604, 1991.
- [19] A. Zeng, X. Liu, S. Zhang, Y. Zheng, P. Huang, K. Du, and Q. Fu, “Determination of azithromycin in raw materials and pharmaceutical formulations by HPLC coupled with an evaporative light scattering detector,” Asian Journal of Pharmaceutical Sciences, vol. 9, no. 2, pp. 107-116, 2014.
- [20] K. Mojsiewicz-Pieńkowska, On the issue of characteristic evaporative light scattering detector response. Critical Reviews in Analytical Chemistry, vol. 39, no. 2, pp. 89-94, 2009.
- [21] W. Yan, N. Wang, P. Zhang, J. Zhang, S. Wu, and Y. Zhu, “Simultaneous determination of sucralose and related compounds by high-performance liquid chromatography with evaporative light scattering detection,” Food Chemistry, vol. 204, pp. 358-364, 2016.
- [22] C. S. Young, and J. W. Dolan, “Success with evaporative light-scattering detection, part II: Tips and techniques,” LC/GC North Am, vol. 22, pp. 244-250, 2004.
- [23] M. Soyseven, B. Sezgin, and G. Arli, “A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation,” Journal of Food Composition and Analysis, vol. 107, pp. 104400, 2022.
- [24] N. Georgelis, K. Fencil, and C. M. Richael, “Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues,” Food Chemistry, vol. 262, pp. 191-198, 2018.