Derleme
BibTex RIS Kaynak Göster

Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler

Yıl 2023, Cilt: 11 Sayı: 3, 1151 - 1169, 31.07.2023
https://doi.org/10.29130/dubited.1074371

Öz

Fotovoltaik (PV) modüllerin en küçük birimini oluşturan güneş gözeleri güneş enerjisini doğrudan elektriğe dönüştürürler. Ancak dönüştürülen elektrik enerjisi gelen enerjisinin %13 ile %20’si arasında değişmektedir. Gelen güneş enerjisinin bir kısmı geri yansımakta geri kalanı ise termal enerjiye dönüşmektedir. Bu nedenle PV modül sıcaklıkları yükselmekte ve PV modüllerin verimleri düşmektedir. Güneş enerjisinden üretilen gücü arttırmanın yollarından biri PV modül sıcaklığını termoelektrik (TE) jeneratörler yardımıyla elektrik enerjisine dönüştürmektir. Bu çalışmada PV – TE güç üretim sistemlerinde yapılan seksen farklı literatür çalışması derlenmiştir. PV-TE sistemler beş grupta sınıflandırılmıştır. Bunlar geleneksel, yoğunlaştırmalı, faz değiştiren malzeme entegreli, ekonomik değerlendirmeler ile güç düzenleme ve kaydetme birimleridir. Özetle geleneksel PV-TE sistemlerdeki sıcaklık ve güç sınırlamalarını ortadan kaldırmak için yoğunlaştırılmış sistemlere geçiş olduğu görülmekle birlikte ve yeni teknikler geliştirilmeye çalışılmaktadır. PV-TE sistemlerin performansı geleneksel PV sistemlerden iyi olsa bile TE modül maliyetinin yüksek olması ve düşük verimliliği bu sistemlerin rekabetçi olmasını kısıtlamaktadır.

Destekleyen Kurum

Muğla Sıtkı Koçman Üniversitesi, Bilimsel Araştırma Projesi

Proje Numarası

19/090/04/1/1

Teşekkür

PV ve PV-TE sistemin deneysel çalışması için finansal destekte bulunan 19/090/04/1/1 numaralı Araştırma Projesi ile maddi destek sağlayan Muğla Sıtkı Koçman Üniversitesi, Bilimsel Araştırma Projesi birimine teşekkür ederim.

Kaynakça

  • [1] J.K. Tonui, Y. Tripanagnostopoulos, “Air-cooled PV/T solar collectors with low cost performance improvements,” Solar Energy, vol. 81, pp. 498–511, 2007.
  • [2] S. Armstrong, W.G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions,” Applied Thermal Engineering, vol. 30, pp. 1488-1495, 2010.
  • [3] S. Kalogirou, Y. Tripanagnostopoulos, Hybrid PV/T solar systems for domestic hot water and electricity production, Energy Conversion and Management, vol. 47, pp. 3368–3382, 2007.
  • [4] W. Glatz, E. Schwyter, L. Durrer, C. Hierold, “Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design,” Journal of Microelectromechanical Systems, vol. 18, pp. 763-772, 2009.
  • [5] V.G.J.H.M. van Sark, “Feasibility of photovoltaic - thermoelectric hybrid modules,” Applied Energy, vol. 88, pp. 2785-2790, 2011.
  • [6] D. Yang, H. Yin, “Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization,” IEEE Transactions on Energy Conversion, vol. 26, pp. 662-670, 2011.
  • [7] Y. Deng, W. Yu, Y. Wang, Y. Shi, “Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design,” Solar Energy, vol. 88, pp. 182–191, 2013.
  • [8] W. Lin, T.M. Shih, J.C. Zheng, Y. Zhang, J. Chen, “Coupling of temperatures and power outputs in hybrid photovoltaic and thermoelectric modules,” International Journal of Heat and Mass Transfer, vol. 74, pp. 121-127, 2014.
  • [9] S. Dong, T.M. Shih, W. Lin, X. Cai, R.R.G. Chang, Chen Z., “Time-Dependent Photovoltaic-Thermoelectric Hybrid Systems,” Numerical Heat Transfer, Part A-Applications, vol. 66, pp. 402-419, 2014.
  • [10] R. Bjørk, K.K. Nielsen, “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system,” Solar Energy, vol. 120, pp. 187-194, 2015.
  • [11] B. Lorenzi, M. Acciarri, D. Narducci, “Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery,” Journal of Electronic Materials, vol. 44, pp. 1809–1813, 2015.
  • [12] D.N. Kossyvakis, G.D. Voutsinas, E.V. Hristoforou, “Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system,” Energy Conversion and Management, vol. 117, pp. 490–500, 2016.
  • [13] F. Attivissimo, A. Di Nisio, A.M.L. Lanzolla, M. Paul, “Feasibility of a Photovoltaic–Thermoelectric Generator: Performance Analysis and Simulation Results,” IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 1158-1169, 2015.
  • [14] A. Rezania, D. Sera, L.A. Rosendahl, “Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe,” Renewable Energy, vol. 99, pp. 127-135, 2016.
  • [15] A. Hashim, J.J. Bomphrey, G. Min, “Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system,” Renewable Energy, vol. 87, pp. 458-463, 2016.
  • [16] T.H. Kwan, X. Wu, “Power and mass optimization of the hybrid solar panel and thermoelectric generators,” Applied Energy, vol. 165, pp. 297-307, 2016.
  • [17] W. Zhu, Y. Deng, Y. Wang, S. Shen, R. Gulfam, “High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management,” Energy, vol. 100, pp. 91-101, 2016.
  • [18] D.T. Cotfas, P.A. Cotfas, D. Ciobanu, O.M. Machidon, “Characterization of Photovoltaic–Thermoelectric–Solar Collector Hybrid Systems in Natural Sunlight Conditions,” Journal of Energy Engineering, vol. 143 no. 04017055, 2017.
  • [19] S., Soltani A., Kasaeian H., Sarrafha D. Wen, “An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application,” Solar Energy, vol. 155, pp. 1033-1043, 2017.
  • [20] O.F. Marandi, M. Ameri, B. Adelshahian, “The experimental investigation of a hybrid photovoltaic-thermoelectric power generator solar cavity-receiver,” Solar Energy, vol. 161, pp. 38–46, 2018.
  • [21] G. Li, S. Shittu, K. Zhou, X. Zhao, X. Ma, “Preliminary experiment on a novel photovoltaic-thermoelectric system in summer,” Energy, vol. 188, no. 116041, 2019.
  • [22] S. Shittu, G. Li, X. Zhao, J. Zhou, X. Ma, Y.G. Akhlaghi, “Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe,” Energy Conversion and Management, vol. 207, no. 112515, 2020.
  • [23] P. Huen, W.A. Daoud, “Advances in hybrid solar photovoltaic and thermoelectric generators,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 1295–1302, 2017.
  • [24] Y.J. Cui, B.L. Wang, J.E. Li, K.F. Wang, “Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 211, no. 112744, 2020.
  • [25] A.E. Siemenn, E.E. Loney, T. Buonassisi, Z. Liu, “Does Energy Yield Increase when Conjoining a PV Module with a Thermoelectric Device?,” 47th IEEE Photovoltaic Specialists Conference (PVSC), 15 June - 21 Aug. 2020, Calgary, AB, Canada, pp. 295-300.
  • [26] B. Zhao, M. Hu, X. Ao, Q. Xuan, Z. Song, G. Pei, “Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?,” Solar Energy Materials & Solar Cells, vol. 228, pp. 111136, 2021.
  • [27] M.A.I. Khan, M.I. Khan, A.H. Kazim, A. Shabir, F. Riaz, N. Mustafa, H. Javed, A. Raza, M. Hussain, C.A. Salman, “An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System,” Frontiers in Energy Research, vol. 9, no. 722514, 2021.
  • [28] G. Kidegho, F. Njoka, C. Muriithi, R. Kinyua, “Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation,” Energy Reports, vol. 7, pp. 1636–1650, 2021.
  • [29] A. Ruzaimi, S. Shafie, W.Z.W. Hassan, N. Azis, M. Effendy Ya’acob, E. Elianddy, W. Aimrun, “Performance analysis of thermoelectric generator implemented on non-uniform heat distribution of photovoltaic module,” Energy Reports, vol. 7, pp. 2379–2387, 2021.
  • [30] C. Demircan, “Fotovoltaik – Termoelektrik (PV-TE) Hibrit Güç Üretim Sistemlerinin Performanslarının İncelenmesi,” Doktora Tezi, Süleyman Demirel Üniversitesi, Enerji Sistemleri Mühendisliği Bölümü, Isparta, Türkiye, 2022.
  • [31] Y. Vorobiev, J. González-Hernández, P. Vorobiev, L. Bulat, “Thermal-photovoltaic solar hybrid system for efficient solar energy conversion,” Solar Energy, vol. 80, pp. 170–176, 2006.
  • [32] T. Liao, B. Lin, Z. Yang, “Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device,” International Journal of Thermal Sciences, vol. 77, pp. 158-164, 2014.
  • [33] O. Beeri, O. Rotem, E. Hazan, E.A. Katz, A. Braun, Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” Journal of Applied Physics, vol. 118, pp. 115104, 2015.
  • [34] R. Lamba, S.C. Kaushik, “Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system,” Energy Conversion and Management, vol. 115, pp. 288-298, 2016.
  • [35] J. Zhang, Y. Xuan, “Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 129, pp. 1–10, 2016.
  • [36] E. Yin, Q. Li, Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 143, pp. 188-202, 2016.
  • [37] J. Zhang, Y. Xuan, L. Yang, “A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell,” International Journal of Energy Research, vol. 40, pp. 1400-1409, 2016.
  • [38] G. Contento, B. Lorenzi, A. Rizzo, D. Narducci, “Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies,” Energy, vol. 131, pp. 230-238, 2017.
  • [39] F.J. Willars-Rodríguez, E.A.Chávez-Urbiola, P. Vorobiev, Y.V. Vorobiev, “Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators,” International Journal of Energy Research, vol. 41, pp. 377-388, 2017.
  • [40] D. Li, Y. Xuan, Q. Li, H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy, vol. 126, pp. 343-351, 2017.
  • [41] G. Li, X. Chen, Y. Jin, “Analysis of the Primary Constraint Conditions of an Efficient Photovoltaic-Thermoelectric Hybrid System,” Energies, vol. 10, no. 20, 2017.
  • [42] Y.-P. Zhou, Y.-L. He, Y. Qiu, Q. Ren, T. Xie, “Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method,” Applied Energy, vol. 207, pp. 18-26, 2017.
  • [43] T.H. Kil, S. Kim, D.H. Jeong, D.M. Geum, S. Lee, S.J. Jung, S. Kim, C. Park, J.S. Kim, J.M. Baik, K.S. Lee, C.Z. Kim, W.J. Choi, S.H. Baek, “A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator, Nano Energy,” vol. 37, pp. 242–247, 2017.
  • [44] S. Soltani, A. Kasaeian, T. Sokhansefat, M.B. Shafii, “Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector,” Energy Conversion and Management, vol. 159, pp. 371-380, 2018.
  • [45] M. Hajji, H. Labrim, M. Benaissa, A. Laazizi, H. Ez-Zahraouy, E. Ntsoenzok, J. Meot, A. Benyoussef, “Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation,” Energy Conversion and Management, vol. 136, pp. 184-191, 2017.
  • [46] S. Mahmoudinezhad, A. Rezania, L.A. Rosendahl, “Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation,” Energy Conversion and Management, vol. 164, pp. 443-452, 2018.
  • [47] E. De-la-Vega, A. Torres-Hernandez, P.M. Rodrigo, F. Brambila-Paz, “Fractional derivative-based performance analysis of hybrid thermoelectric generator-concentrator photovoltaic system,” Applied Thermal Engineering, vol. 193, no. 116984, 2021.
  • [48] E. Yin, Q. Li, Y. Xuan, “One-day performance evaluation of photovoltaic-thermoelectric hybrid system,” Energy, vol. 143, pp. 337-346, 2018.
  • [49] E. Yin, Q. Li, Y. Xuan, “Optimal design method for concentrating photovoltaic-thermoelectric hybrid system,” Applied Energy, vol. 226, pp. 320-329, 2018.
  • [50] E. Yin, Q. Li, Y. Xuan, “Experimental optimization of operating conditions for concentrating photovoltaic-thermoelectric hybrid system,” Journal of Power Sources, vol. 422, pp. 25-32, 2019.
  • [51] P.M. Rodrigo, Á. Valera, E.F. Fernández, F.M. Almonacid, “Annual Energy Harvesting of Passively Cooled Hybrid Thermoelectric Generator-Concentrator Photovoltaic Modules,” IEEE Journal of Photovoltaics, vol. 9, pp. 1652-1660, 2019.
  • [52] A. Yusuf, N. Bayhan, H. Tiryaki, H. Hamawandi, M.S Toprak, S. Ballikaya, “Multi-objective optimization of concentrated Photovoltaic-Thermoelectric hybrid system via non-dominated sorting genetic algorithm (NSGA II),” Energy Conversion and Management, vol. 236, no. 114065, 2021.
  • [53] U.A. Saleh, M.A. Johar, S.A. Jumaat, M.N. Rejab, W.A. Wan Jamaludin, “Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review,” International Journal of Renewable Energy Development, vol. 10, pp. 385-400, 2021.
  • [54] J. Skovajsa, M. Koláček, M. Zálešak, “Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling,” Energies, vol. 10, no. 152, 2017.
  • [55] M. Jaworski, M. Bednarczyk, M. Czachor, “Experimental investigation of thermoelectric generator (TEG) with PCM module,” Applied Thermal Engineering, vol. 96, pp. 527-533, 2016.
  • [56] T. Cui, Y. Xuan, Q. Li, “Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials,” Energy Conversion and Management, vol. 112, pp. 49-60, 2016.
  • [57] T. Cui, Y. Xuan, E. Yin, Q. Li, D. Li, “Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials,” Energy, vol. 122, pp. 94-102, 2017.
  • [58] J. Zhang, Y. Xuan, “Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation,” Renewable Energy, vol. 113, pp. 1551-1558, 2017.
  • [59] E. Yin, Q. Li, D. Li, Y. Xuan, “Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials,” Energy, vol. 169, pp. 172-185, 2019.
  • [60] P. Motiei, M. Yaghoubi, E. GoshtasbiRad, “Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material,” Sustainable Energy Technologies and Assessments, vol. 39, pp. 200-213, 2019.
  • [61] F. Bayrak, H.F. Oztop, F. Selimefendigil, “Experimental study for the application of different cooling techniques in photovoltaic (PV) panels,” Energy Conversion and Management, vol. 212, pp. 112789, 2020.
  • [62] M. Naderi, B.M. Ziapour, M.Y. Gendeshmin, “Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock,” Journal of Energy Storage, vol. 36, pp. 102384, 2021.
  • [63] J. Ko, J.W. Jeong, “Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material,” Renewable and Sustainable Energy Reviews, vol. 145, pp. 111085, 2021.
  • [64] J. Zhang, J. Zhang, Y. Qian, J. Dong, “The influence of the bandgap on the photovoltaic-thermoelectric hybrid system,” International Journal of Energy Research, vol. 45, pp. 3979–3987, 2021.
  • [65] IRENA Solar Costs, https://www.irena.org/Statistics/View-Data-by-Topic/Costs/Solar-Costs (Erişim Tarihi: 03.12.2021).
  • [66] G. Li, X. Zhao, J. Ji, “Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis,” Energy Conversion and Management, vol. 126, pp. 935–943, 2016.
  • [67] A. Rezania, L.A. Rosendahl, “Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system,” Applied Energy, vol. 187, pp. 380–389, 2017.
  • [68] F.J. Montero, R. Kumar, R. Lamba, R.A. Escobar, M. Vashishtha, S. Upadhyaya, A.M. Guzman, “Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile,” Energy, vol. 239, no. 122058, 2022.
  • [69] D. Narducci, B. Lorenzi, “Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters,” ACS Applied Energy Materials, vol. 4, pp. 4029−4037, 2021.
  • [70] K.G. Ismaila, A.Z. Sahin, B.S. Yilbas, A. Al-Sharafi, “Thermo-economic optimization of a hybrid photovoltaic and thermoelectric power generator using overall performance index,” Journal of Thermal Analysis and Calorimetry, vol. 144, pp. 1815-1829, 2021.
  • [71] K.G. Ismaila, A.Z. Sahin, B.S. Yilbas, “Exergo‑economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator,” Journal of Thermal Analysis and Calorimetry, vol. 145, pp. 1035–1052, 2021.
  • [72] A. Muhtaroglu, A. Yokochi, A. von Jouanne, “Integration of thermoelectrics and photovoltaics as auxiliary power sources in mobile computing applications,” Journal of Power Sources, vol. 177, pp. 239-246, 2008. [73] Y. Fan, L. Ge, W. Hua, “Multiple-input DC-DC converter for the thermoelectric-photovoltaic energy system in Hybrid Electric Vehicles,” IEEE Vehicle Power and Propulsion Conference, 1-3 Sept., Lille, France, no. 11873614, 2010.
  • [74] X. Zhang, K.T. Chau, “Design and Implementation of a New Thermoelectric-Photovoltaic Hybrid Energy System for Hybrid Electric Vehicles,” Electric Power Component and Systems, vol. 139, pp. 511-525, 2011.
  • [75] X. Zhang, K.T. Chau, “An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking,” Energy Conversion and Management, vol. 52, pp. 641–647, 2011.
  • [76] D.H. Jung, K. Kim, S.O. Jung, “Thermal and solar energy harvesting boost converter with time-multiplexing MPPT algorithm,” IEICE Electronic Express, vol. 13, no. 12, pp. 1-9, 2016.
  • [77] L. Liu, P. Zhang, X. Liao, Z. Zhu, “A single-inductor thermoelectric and photovoltaic hybrid harvesting interface with time-multiplexed technology and accurate zero current detector,” Microelectronics Journal, vol. 113, no. 105062, 2021.
  • [78] T.H. Kwan, X. Wu, “The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system,” Applied Energy, vol. 204, pp. 873-886, 2017.
  • [79] V. Verma, A. Kane, B. Singh, “Complementary performance enhancement of PV energy system through thermoelectric generation,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1017–1026, 2016.
  • [80] M. Sathiyanathan, S. Jaganathan, R.L. Josephine, “Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators,” Journal of Power Electronics, vol. 19, pp. 220-233, 2019.
  • [81] R.I.S. Pereira, M.M. Camboim, A.W.R. Villarim, C.P. Souza, S.C.S. Jucá, P.C.M. Carvalho, “On harvesting residual thermal energy from photovoltaic module back surface,” International Journal of Electronics and Communications, vol. 111, no. 152878, 2019.
  • [82] S. Jena, S.K. Kar, “Employment of solar photovoltaic-thermoelectric generator-based hybrid system for efficient operation of hybrid nonconventional distribution generator,” International Journal of Energy Research, vol. 44, pp. 109-127, 2020.
  • [83] Z.H. Shen, H. Ni, C. Ding, G.R. Sui, H.Z. Jia, X.M. Gao, N. Wang, “Improving the Energy-Conversion Efficiency of a PV–TE System With an Intelligent Power-Track Switching Technique and Efficient Thermal-Management Scheme,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, pp. 963-973, 2021.
  • [84] A.F. Mirza, M. Mansoor, K. Zerbakht, M.Y. Javed, M.H. Zafar, N.M. Khan, “High-efficiency hybrid PV-TEG system with intelligent control to harvest maximum energy under various non-static operating conditions,” Journal of Cleaner Production, vol. 320, no. 128643, 2021.
  • [85] N. Kanagaraj, “Hybrid Renewable Energy Source Combined Dynamic Voltage Restorer for Power Quality Improvement,” Computer Systems Science and Engineering, vol. 40, pp. 517–538, 2022.

Recent Developments of Photovoltaic-Thermoelectric Hybrid Power Generation Systems

Yıl 2023, Cilt: 11 Sayı: 3, 1151 - 1169, 31.07.2023
https://doi.org/10.29130/dubited.1074371

Öz

Solar cells directly convert solar energy into electricity and are small unit of photovoltaic (PV) modules. However, energy conversion changes between 13% and 20% from solar energy. Incoming solar energy reflects from the surface and the rest of the solar energy converts to thermal energy. So, PV module temperature rises and efficiency decreases. Ones of the increasing of electricity from solar energy is utilization of PV module temperature together with thermoelectric (TE) generators. In this study, eighty different publications in literature were reviewed about PV-TE hybrid power generation systems. PV-TE system was classified in five groups. These are conventional, concentrated, phase change material integrated, economic perspectives and power conditioning units. In briefly, concentrated PV-TE system is alternative to remove of the temperature and power limitations of conventional PV-TE system and try to novel techniques of these limitations. However, even if PV-TE system performance is better than conventional PV system, high costs and low efficiency TE modules are restricted to competitive becoming of PV-TE systems.

Proje Numarası

19/090/04/1/1

Kaynakça

  • [1] J.K. Tonui, Y. Tripanagnostopoulos, “Air-cooled PV/T solar collectors with low cost performance improvements,” Solar Energy, vol. 81, pp. 498–511, 2007.
  • [2] S. Armstrong, W.G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions,” Applied Thermal Engineering, vol. 30, pp. 1488-1495, 2010.
  • [3] S. Kalogirou, Y. Tripanagnostopoulos, Hybrid PV/T solar systems for domestic hot water and electricity production, Energy Conversion and Management, vol. 47, pp. 3368–3382, 2007.
  • [4] W. Glatz, E. Schwyter, L. Durrer, C. Hierold, “Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design,” Journal of Microelectromechanical Systems, vol. 18, pp. 763-772, 2009.
  • [5] V.G.J.H.M. van Sark, “Feasibility of photovoltaic - thermoelectric hybrid modules,” Applied Energy, vol. 88, pp. 2785-2790, 2011.
  • [6] D. Yang, H. Yin, “Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization,” IEEE Transactions on Energy Conversion, vol. 26, pp. 662-670, 2011.
  • [7] Y. Deng, W. Yu, Y. Wang, Y. Shi, “Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design,” Solar Energy, vol. 88, pp. 182–191, 2013.
  • [8] W. Lin, T.M. Shih, J.C. Zheng, Y. Zhang, J. Chen, “Coupling of temperatures and power outputs in hybrid photovoltaic and thermoelectric modules,” International Journal of Heat and Mass Transfer, vol. 74, pp. 121-127, 2014.
  • [9] S. Dong, T.M. Shih, W. Lin, X. Cai, R.R.G. Chang, Chen Z., “Time-Dependent Photovoltaic-Thermoelectric Hybrid Systems,” Numerical Heat Transfer, Part A-Applications, vol. 66, pp. 402-419, 2014.
  • [10] R. Bjørk, K.K. Nielsen, “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system,” Solar Energy, vol. 120, pp. 187-194, 2015.
  • [11] B. Lorenzi, M. Acciarri, D. Narducci, “Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery,” Journal of Electronic Materials, vol. 44, pp. 1809–1813, 2015.
  • [12] D.N. Kossyvakis, G.D. Voutsinas, E.V. Hristoforou, “Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system,” Energy Conversion and Management, vol. 117, pp. 490–500, 2016.
  • [13] F. Attivissimo, A. Di Nisio, A.M.L. Lanzolla, M. Paul, “Feasibility of a Photovoltaic–Thermoelectric Generator: Performance Analysis and Simulation Results,” IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 1158-1169, 2015.
  • [14] A. Rezania, D. Sera, L.A. Rosendahl, “Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe,” Renewable Energy, vol. 99, pp. 127-135, 2016.
  • [15] A. Hashim, J.J. Bomphrey, G. Min, “Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system,” Renewable Energy, vol. 87, pp. 458-463, 2016.
  • [16] T.H. Kwan, X. Wu, “Power and mass optimization of the hybrid solar panel and thermoelectric generators,” Applied Energy, vol. 165, pp. 297-307, 2016.
  • [17] W. Zhu, Y. Deng, Y. Wang, S. Shen, R. Gulfam, “High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management,” Energy, vol. 100, pp. 91-101, 2016.
  • [18] D.T. Cotfas, P.A. Cotfas, D. Ciobanu, O.M. Machidon, “Characterization of Photovoltaic–Thermoelectric–Solar Collector Hybrid Systems in Natural Sunlight Conditions,” Journal of Energy Engineering, vol. 143 no. 04017055, 2017.
  • [19] S., Soltani A., Kasaeian H., Sarrafha D. Wen, “An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application,” Solar Energy, vol. 155, pp. 1033-1043, 2017.
  • [20] O.F. Marandi, M. Ameri, B. Adelshahian, “The experimental investigation of a hybrid photovoltaic-thermoelectric power generator solar cavity-receiver,” Solar Energy, vol. 161, pp. 38–46, 2018.
  • [21] G. Li, S. Shittu, K. Zhou, X. Zhao, X. Ma, “Preliminary experiment on a novel photovoltaic-thermoelectric system in summer,” Energy, vol. 188, no. 116041, 2019.
  • [22] S. Shittu, G. Li, X. Zhao, J. Zhou, X. Ma, Y.G. Akhlaghi, “Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe,” Energy Conversion and Management, vol. 207, no. 112515, 2020.
  • [23] P. Huen, W.A. Daoud, “Advances in hybrid solar photovoltaic and thermoelectric generators,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 1295–1302, 2017.
  • [24] Y.J. Cui, B.L. Wang, J.E. Li, K.F. Wang, “Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 211, no. 112744, 2020.
  • [25] A.E. Siemenn, E.E. Loney, T. Buonassisi, Z. Liu, “Does Energy Yield Increase when Conjoining a PV Module with a Thermoelectric Device?,” 47th IEEE Photovoltaic Specialists Conference (PVSC), 15 June - 21 Aug. 2020, Calgary, AB, Canada, pp. 295-300.
  • [26] B. Zhao, M. Hu, X. Ao, Q. Xuan, Z. Song, G. Pei, “Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?,” Solar Energy Materials & Solar Cells, vol. 228, pp. 111136, 2021.
  • [27] M.A.I. Khan, M.I. Khan, A.H. Kazim, A. Shabir, F. Riaz, N. Mustafa, H. Javed, A. Raza, M. Hussain, C.A. Salman, “An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System,” Frontiers in Energy Research, vol. 9, no. 722514, 2021.
  • [28] G. Kidegho, F. Njoka, C. Muriithi, R. Kinyua, “Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation,” Energy Reports, vol. 7, pp. 1636–1650, 2021.
  • [29] A. Ruzaimi, S. Shafie, W.Z.W. Hassan, N. Azis, M. Effendy Ya’acob, E. Elianddy, W. Aimrun, “Performance analysis of thermoelectric generator implemented on non-uniform heat distribution of photovoltaic module,” Energy Reports, vol. 7, pp. 2379–2387, 2021.
  • [30] C. Demircan, “Fotovoltaik – Termoelektrik (PV-TE) Hibrit Güç Üretim Sistemlerinin Performanslarının İncelenmesi,” Doktora Tezi, Süleyman Demirel Üniversitesi, Enerji Sistemleri Mühendisliği Bölümü, Isparta, Türkiye, 2022.
  • [31] Y. Vorobiev, J. González-Hernández, P. Vorobiev, L. Bulat, “Thermal-photovoltaic solar hybrid system for efficient solar energy conversion,” Solar Energy, vol. 80, pp. 170–176, 2006.
  • [32] T. Liao, B. Lin, Z. Yang, “Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device,” International Journal of Thermal Sciences, vol. 77, pp. 158-164, 2014.
  • [33] O. Beeri, O. Rotem, E. Hazan, E.A. Katz, A. Braun, Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” Journal of Applied Physics, vol. 118, pp. 115104, 2015.
  • [34] R. Lamba, S.C. Kaushik, “Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system,” Energy Conversion and Management, vol. 115, pp. 288-298, 2016.
  • [35] J. Zhang, Y. Xuan, “Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 129, pp. 1–10, 2016.
  • [36] E. Yin, Q. Li, Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Conversion and Management, vol. 143, pp. 188-202, 2016.
  • [37] J. Zhang, Y. Xuan, L. Yang, “A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell,” International Journal of Energy Research, vol. 40, pp. 1400-1409, 2016.
  • [38] G. Contento, B. Lorenzi, A. Rizzo, D. Narducci, “Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies,” Energy, vol. 131, pp. 230-238, 2017.
  • [39] F.J. Willars-Rodríguez, E.A.Chávez-Urbiola, P. Vorobiev, Y.V. Vorobiev, “Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators,” International Journal of Energy Research, vol. 41, pp. 377-388, 2017.
  • [40] D. Li, Y. Xuan, Q. Li, H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy, vol. 126, pp. 343-351, 2017.
  • [41] G. Li, X. Chen, Y. Jin, “Analysis of the Primary Constraint Conditions of an Efficient Photovoltaic-Thermoelectric Hybrid System,” Energies, vol. 10, no. 20, 2017.
  • [42] Y.-P. Zhou, Y.-L. He, Y. Qiu, Q. Ren, T. Xie, “Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method,” Applied Energy, vol. 207, pp. 18-26, 2017.
  • [43] T.H. Kil, S. Kim, D.H. Jeong, D.M. Geum, S. Lee, S.J. Jung, S. Kim, C. Park, J.S. Kim, J.M. Baik, K.S. Lee, C.Z. Kim, W.J. Choi, S.H. Baek, “A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator, Nano Energy,” vol. 37, pp. 242–247, 2017.
  • [44] S. Soltani, A. Kasaeian, T. Sokhansefat, M.B. Shafii, “Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector,” Energy Conversion and Management, vol. 159, pp. 371-380, 2018.
  • [45] M. Hajji, H. Labrim, M. Benaissa, A. Laazizi, H. Ez-Zahraouy, E. Ntsoenzok, J. Meot, A. Benyoussef, “Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation,” Energy Conversion and Management, vol. 136, pp. 184-191, 2017.
  • [46] S. Mahmoudinezhad, A. Rezania, L.A. Rosendahl, “Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation,” Energy Conversion and Management, vol. 164, pp. 443-452, 2018.
  • [47] E. De-la-Vega, A. Torres-Hernandez, P.M. Rodrigo, F. Brambila-Paz, “Fractional derivative-based performance analysis of hybrid thermoelectric generator-concentrator photovoltaic system,” Applied Thermal Engineering, vol. 193, no. 116984, 2021.
  • [48] E. Yin, Q. Li, Y. Xuan, “One-day performance evaluation of photovoltaic-thermoelectric hybrid system,” Energy, vol. 143, pp. 337-346, 2018.
  • [49] E. Yin, Q. Li, Y. Xuan, “Optimal design method for concentrating photovoltaic-thermoelectric hybrid system,” Applied Energy, vol. 226, pp. 320-329, 2018.
  • [50] E. Yin, Q. Li, Y. Xuan, “Experimental optimization of operating conditions for concentrating photovoltaic-thermoelectric hybrid system,” Journal of Power Sources, vol. 422, pp. 25-32, 2019.
  • [51] P.M. Rodrigo, Á. Valera, E.F. Fernández, F.M. Almonacid, “Annual Energy Harvesting of Passively Cooled Hybrid Thermoelectric Generator-Concentrator Photovoltaic Modules,” IEEE Journal of Photovoltaics, vol. 9, pp. 1652-1660, 2019.
  • [52] A. Yusuf, N. Bayhan, H. Tiryaki, H. Hamawandi, M.S Toprak, S. Ballikaya, “Multi-objective optimization of concentrated Photovoltaic-Thermoelectric hybrid system via non-dominated sorting genetic algorithm (NSGA II),” Energy Conversion and Management, vol. 236, no. 114065, 2021.
  • [53] U.A. Saleh, M.A. Johar, S.A. Jumaat, M.N. Rejab, W.A. Wan Jamaludin, “Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review,” International Journal of Renewable Energy Development, vol. 10, pp. 385-400, 2021.
  • [54] J. Skovajsa, M. Koláček, M. Zálešak, “Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling,” Energies, vol. 10, no. 152, 2017.
  • [55] M. Jaworski, M. Bednarczyk, M. Czachor, “Experimental investigation of thermoelectric generator (TEG) with PCM module,” Applied Thermal Engineering, vol. 96, pp. 527-533, 2016.
  • [56] T. Cui, Y. Xuan, Q. Li, “Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials,” Energy Conversion and Management, vol. 112, pp. 49-60, 2016.
  • [57] T. Cui, Y. Xuan, E. Yin, Q. Li, D. Li, “Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials,” Energy, vol. 122, pp. 94-102, 2017.
  • [58] J. Zhang, Y. Xuan, “Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation,” Renewable Energy, vol. 113, pp. 1551-1558, 2017.
  • [59] E. Yin, Q. Li, D. Li, Y. Xuan, “Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials,” Energy, vol. 169, pp. 172-185, 2019.
  • [60] P. Motiei, M. Yaghoubi, E. GoshtasbiRad, “Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material,” Sustainable Energy Technologies and Assessments, vol. 39, pp. 200-213, 2019.
  • [61] F. Bayrak, H.F. Oztop, F. Selimefendigil, “Experimental study for the application of different cooling techniques in photovoltaic (PV) panels,” Energy Conversion and Management, vol. 212, pp. 112789, 2020.
  • [62] M. Naderi, B.M. Ziapour, M.Y. Gendeshmin, “Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock,” Journal of Energy Storage, vol. 36, pp. 102384, 2021.
  • [63] J. Ko, J.W. Jeong, “Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material,” Renewable and Sustainable Energy Reviews, vol. 145, pp. 111085, 2021.
  • [64] J. Zhang, J. Zhang, Y. Qian, J. Dong, “The influence of the bandgap on the photovoltaic-thermoelectric hybrid system,” International Journal of Energy Research, vol. 45, pp. 3979–3987, 2021.
  • [65] IRENA Solar Costs, https://www.irena.org/Statistics/View-Data-by-Topic/Costs/Solar-Costs (Erişim Tarihi: 03.12.2021).
  • [66] G. Li, X. Zhao, J. Ji, “Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis,” Energy Conversion and Management, vol. 126, pp. 935–943, 2016.
  • [67] A. Rezania, L.A. Rosendahl, “Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system,” Applied Energy, vol. 187, pp. 380–389, 2017.
  • [68] F.J. Montero, R. Kumar, R. Lamba, R.A. Escobar, M. Vashishtha, S. Upadhyaya, A.M. Guzman, “Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile,” Energy, vol. 239, no. 122058, 2022.
  • [69] D. Narducci, B. Lorenzi, “Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters,” ACS Applied Energy Materials, vol. 4, pp. 4029−4037, 2021.
  • [70] K.G. Ismaila, A.Z. Sahin, B.S. Yilbas, A. Al-Sharafi, “Thermo-economic optimization of a hybrid photovoltaic and thermoelectric power generator using overall performance index,” Journal of Thermal Analysis and Calorimetry, vol. 144, pp. 1815-1829, 2021.
  • [71] K.G. Ismaila, A.Z. Sahin, B.S. Yilbas, “Exergo‑economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator,” Journal of Thermal Analysis and Calorimetry, vol. 145, pp. 1035–1052, 2021.
  • [72] A. Muhtaroglu, A. Yokochi, A. von Jouanne, “Integration of thermoelectrics and photovoltaics as auxiliary power sources in mobile computing applications,” Journal of Power Sources, vol. 177, pp. 239-246, 2008. [73] Y. Fan, L. Ge, W. Hua, “Multiple-input DC-DC converter for the thermoelectric-photovoltaic energy system in Hybrid Electric Vehicles,” IEEE Vehicle Power and Propulsion Conference, 1-3 Sept., Lille, France, no. 11873614, 2010.
  • [74] X. Zhang, K.T. Chau, “Design and Implementation of a New Thermoelectric-Photovoltaic Hybrid Energy System for Hybrid Electric Vehicles,” Electric Power Component and Systems, vol. 139, pp. 511-525, 2011.
  • [75] X. Zhang, K.T. Chau, “An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking,” Energy Conversion and Management, vol. 52, pp. 641–647, 2011.
  • [76] D.H. Jung, K. Kim, S.O. Jung, “Thermal and solar energy harvesting boost converter with time-multiplexing MPPT algorithm,” IEICE Electronic Express, vol. 13, no. 12, pp. 1-9, 2016.
  • [77] L. Liu, P. Zhang, X. Liao, Z. Zhu, “A single-inductor thermoelectric and photovoltaic hybrid harvesting interface with time-multiplexed technology and accurate zero current detector,” Microelectronics Journal, vol. 113, no. 105062, 2021.
  • [78] T.H. Kwan, X. Wu, “The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system,” Applied Energy, vol. 204, pp. 873-886, 2017.
  • [79] V. Verma, A. Kane, B. Singh, “Complementary performance enhancement of PV energy system through thermoelectric generation,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1017–1026, 2016.
  • [80] M. Sathiyanathan, S. Jaganathan, R.L. Josephine, “Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators,” Journal of Power Electronics, vol. 19, pp. 220-233, 2019.
  • [81] R.I.S. Pereira, M.M. Camboim, A.W.R. Villarim, C.P. Souza, S.C.S. Jucá, P.C.M. Carvalho, “On harvesting residual thermal energy from photovoltaic module back surface,” International Journal of Electronics and Communications, vol. 111, no. 152878, 2019.
  • [82] S. Jena, S.K. Kar, “Employment of solar photovoltaic-thermoelectric generator-based hybrid system for efficient operation of hybrid nonconventional distribution generator,” International Journal of Energy Research, vol. 44, pp. 109-127, 2020.
  • [83] Z.H. Shen, H. Ni, C. Ding, G.R. Sui, H.Z. Jia, X.M. Gao, N. Wang, “Improving the Energy-Conversion Efficiency of a PV–TE System With an Intelligent Power-Track Switching Technique and Efficient Thermal-Management Scheme,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, pp. 963-973, 2021.
  • [84] A.F. Mirza, M. Mansoor, K. Zerbakht, M.Y. Javed, M.H. Zafar, N.M. Khan, “High-efficiency hybrid PV-TEG system with intelligent control to harvest maximum energy under various non-static operating conditions,” Journal of Cleaner Production, vol. 320, no. 128643, 2021.
  • [85] N. Kanagaraj, “Hybrid Renewable Energy Source Combined Dynamic Voltage Restorer for Power Quality Improvement,” Computer Systems Science and Engineering, vol. 40, pp. 517–538, 2022.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cihan Demircan 0000-0003-2094-0473

Ali Keçebaş 0000-0003-4809-2461

Hilmi Bayrakçı 0000-0001-5064-7310

Proje Numarası 19/090/04/1/1
Yayımlanma Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Demircan, C., Keçebaş, A., & Bayrakçı, H. (2023). Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(3), 1151-1169. https://doi.org/10.29130/dubited.1074371
AMA Demircan C, Keçebaş A, Bayrakçı H. Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler. DÜBİTED. Temmuz 2023;11(3):1151-1169. doi:10.29130/dubited.1074371
Chicago Demircan, Cihan, Ali Keçebaş, ve Hilmi Bayrakçı. “Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, sy. 3 (Temmuz 2023): 1151-69. https://doi.org/10.29130/dubited.1074371.
EndNote Demircan C, Keçebaş A, Bayrakçı H (01 Temmuz 2023) Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 3 1151–1169.
IEEE C. Demircan, A. Keçebaş, ve H. Bayrakçı, “Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler”, DÜBİTED, c. 11, sy. 3, ss. 1151–1169, 2023, doi: 10.29130/dubited.1074371.
ISNAD Demircan, Cihan vd. “Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/3 (Temmuz 2023), 1151-1169. https://doi.org/10.29130/dubited.1074371.
JAMA Demircan C, Keçebaş A, Bayrakçı H. Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler. DÜBİTED. 2023;11:1151–1169.
MLA Demircan, Cihan vd. “Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 11, sy. 3, 2023, ss. 1151-69, doi:10.29130/dubited.1074371.
Vancouver Demircan C, Keçebaş A, Bayrakçı H. Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler. DÜBİTED. 2023;11(3):1151-69.