Araştırma Makalesi
BibTex RIS Kaynak Göster

Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 3, 1194 - 1205, 31.07.2023
https://doi.org/10.29130/dubited.1081197

Öz

Bu çalışmada farklı gözenek oranına sahip perdelerin çalkantıyı sönümleme etkisi sayısal olarak incelenmiştir. Sayısal modelde perdeler tankın her iki yanal yüzeyine yerleştirilmiş ve salınım hareketine zorlanmıştır. Perdeler için serbest su yüzeyinde, altında ve üstünde olarak üç farklı konum belirlenmiştir. Her bir perde için, serbest su yüksekliğinde okunan basınç değerleri ile akışkan serbest yüzey deformasyonu zamana bağlı olarak karşılaştırılmıştır. Çalışma sonucunda tank yanal yüzeylerine uygulanan perdelerin, yüzey deformasyonunu azaltarak serbest su seviyesinde çalkantı kuvvetlerini düşürdüğü gösterilmiştir. Perdelerin basınç sönümleme oranları karşılaştırıldığında, en iyi oranın gözeneksiz perde olduğu belirtilerek. Serbest su yüzeyine yakın perde yerleşiminin basınç sönümlemede daha etkili olduğu tespit edilmiştir. Ancak gözenekli perdelerin sönüm oranı katı perdeye yakın olduğu, tanka daha az yük getireceği için bu tip perdenin uygunluğu vurgulanmıştır.

Kaynakça

  • [1] H. Akyildiz and E. Ünal, “Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing,” Ocean Eng., vol. 32, no. 11-12, pp. 1503-1516, 2005.
  • [2] M. A. Cruchaga, R. S. Reinoso, M. A. Storti, DJ Celentano and TE Tezduyar, “Finite element computation and experimental validation of sloshing in rectangular tanks,” Comput. Mech., vol. 52, no. 6, pp. 1301-1312, 2013.
  • [3] X. Jin, J. Tang, X. Tang, S. Mi, J. Wu, Mi Liu and Z. Huang, “Effect of viscosity on sloshing in a rectangular tank with intermediate liquid depth,” Exp. Therm. Fluid Sci., vol. 118, pp. 110-148, 2020.
  • [4] M.S. Celebi and H. Akyildiz, “Nonlinear modeling of liquid sloshing in a moving rectangular tank,” Ocean Eng., vol. 29, no. 12, pp. 1527–1553, 2002.
  • [5] Y. M. Yu, N. Ma, S. M. Fan and X. C. Gu, “Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates,” Ocean Eng., vol. 129, pp. 217–227, 2016.
  • [6] S. P. Kim, S. M. Chung, W. J. Shin, D. S. Cho and J. C. Park, “Experimental study on sloshing reduction effects of baffles linked to a spring system,” Ocean Eng., vol. 170, pp. 136–147, 2018.
  • [7] T. Nasar and S. A. Sannasiraj, “Sloshing dynamics and performance of porous baffle arrangements in a barge carrying liquid tank”, Ocean Eng., vol. 183, pp. 24–39, 2019.
  • [8] R. Belakroum, M. Kadja, T. H. Mai and C. Maalouf, “An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid,” Mech. Res. Commun., vol. 37, no. 3, pp. 341–346, 2010.
  • [9] H. Akyildiz, “A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank,” J. Sound Vib., vol. 331, no.1, pp. 41–52, 2012.
  • [10] M. A. Goudarzi and S. R. Sabbagh-Yazdi, “Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles,” Ocean Eng., vol. 42, pp. 205–217, 2012.
  • [11] J. H. Jung, H. S. Yoon, C. Y. Lee and S. C. Shin, “Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank,” Ocean Eng., vol. 44, no. 79–89, 2012.
  • [12] H. Jin, Y. Liu and H. J. Li, “Experimental study on sloshing in a tank with an inner horizontal perforated plate,” Ocean Eng., vol. 82, pp. 75–84, 2014.
  • [13] F. C. Korkmaz and B. Güzel, “On the effects of the number of baffles in sloshing dynamics,” Ships and Offshore Structures, vol. 18, no. 1, pp. 21-33, 2023.
  • [14] Y. Kim, S. M. Hwang, S. E. Chun, Y. S. Suh, J. J. Park and Y. J. Lee, “Model-scale sloshing tests for an anti-sloshing blanket system,” Int. J. Offshore Polar Eng., vol. 23, no. 4, pp. 254–262, 2013.
  • [15] S.C Hwang, J. C. Park, H. Gotoh, A. Khayyer and K.J. Kang, “Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid- structure interaction analysis method,” Ocean Eng., vol. 118, pp. 227–241, 2016.
  • [16] V. S. Sanapala, M. Rajkumar, K. Velusamy and B. S. V. Patnaik, “Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container,” J. Fluids Struct., vol. 76, pp. 229–250, 2018.
  • [17] F. Koca ve M. Zabun, “Çoklu Bölmeli Kare Tankta Su Çalkalanmasının Sayısal Araştırması,” Avrupa Bilim ve Teknoloji Dergisi, c. 28, ss. 1062-1070, 2021.
  • [18] H. Akyildiz “Sloshing in a T-baffled rectangular storage tank numerical study for 2-D problems,” GİDB Dergi, s. 1, ss. 13–34, 2014.
  • [19] N. Cavalagli, C. Biscarini, A. L. Facci, F. Ubertini and S. Ubertini, “ Experimental and numerical analysis of energy dissipation in a sloshing absorber,” J. Fluids Struct., vol. 68, pp. 466–481, 2017.
  • [20] I. H. Cho and M. H. Kim, “Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank,” Ocean Eng., vol. 126, pp. 364–373, 2016.
  • [21] W. H. Tsao and Y. L. Huang, “Sloshing force in a rectangular tank with porous media,” Results in Engineering, vol. 11, 100250, 2021.
  • [22] F. C. Korkmaz, K. Yigit ve B. Guzel “Perde Tipi Engellerin Çalkantı Yüklerini Azaltma Etkileri Üzerine Deneysel Bir Çalışma,” El-Cezerî Fen ve Mühendislik Dergisi, c. 8, s. 3, ss. 1149-1157, 2021.
  • [23] G. Sahin and S. Bayraktar, “Flow Visualization of Sloshing in an Accelerated Two-Dimensional Rectangular Tank,” International Journal of Engıneerıng Technologies, vol. 1, no. 3, pp. 106-112, 2015.
  • [24] C. Seibi, A. Goharzadeh and L. Khezzar, “Water Sloshing in Rectangular Tanks– An Experimental Investigation Numerical Simulation,” Int. J. Eng., vol. 3, no. 3, pp. 174–184, 2009.
  • [25] M. S. Kirkgoz, “Impact Pressure of Breaking Waves on Vertical and Sloping Walls,” Ocean Engineering, vol. 18, no. 1-2, pp. 45-59, 1991.
  • [26] C. Lugni, M. Brocchini and O. M. Faltinsen, “Wave impact loads: The role of the flip-through,” Phys Fluids, vol. 18, 122101, 2006.
  • [27] D. Kisacik, P. Troch and P. Van Bogaert, “Description of loading conditions due to violent wave impacts on a vertical structure with an overhanging horizontal cantilever slab,” Coastal Eng., vol. 60, pp. 201–226, 2012.
  • [28] V.S. Sanapala, K. Velusamy and B.S.V. Patnaik, “Numerical study of coupled slosh modes in a 3D vessel subjected to multi-directional excitations,” Annals of Nuclear Energy, vol. 175, 109197, 2022.
  • [29] D. Z. Ning, P. Su and C. W. Zhang, “Experimental Study on A Sloshing Mitigation Concept Using Floating Layers of Solid Foam Elements,” China Ocean Eng., vol. 33, no. 1, pp. 34–43, 2019.
  • [30] A. Demir ve A. E. Dinçer, “Batık Minarelerde Su Seviyesinin Yapıya Olan Etkisinin Sayısal Olarak İncelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 11, s. 1, ss. 325-332, 2021.

Numerical Investigation of solidity rate and position of baffles efficiency on damping sloshing

Yıl 2023, Cilt: 11 Sayı: 3, 1194 - 1205, 31.07.2023
https://doi.org/10.29130/dubited.1081197

Öz

In this study, the effect of baffle solidity in a partially filled rectangular tank on sloshing was investigated numerically. In the numerical model, the baffles are located on both lateral surfaces of the tank and are forced into oscillating motion. Three different positions were determined for the baffles as free water surface, below and above. For each baffles cases, the pressure values are measured at the free surface level and the free surface deformation of the fluid were compared. The results of the study showed that it reduces the pressures at the free surface level by decaying the surface deformation with applying baffles to the lateral tank walls. When the pressure damping ratios of the baffles are compared, it is seen that the best damping ratio is measured by using the solid baffles. In addition, it has been determined that the baffles placements closed to the free water surface was more effective in pressure damping. However, the better applicable of perforated baffles are emphasized because the damping rates are close to the solid baffles and it will bring less load to the tank.

Kaynakça

  • [1] H. Akyildiz and E. Ünal, “Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing,” Ocean Eng., vol. 32, no. 11-12, pp. 1503-1516, 2005.
  • [2] M. A. Cruchaga, R. S. Reinoso, M. A. Storti, DJ Celentano and TE Tezduyar, “Finite element computation and experimental validation of sloshing in rectangular tanks,” Comput. Mech., vol. 52, no. 6, pp. 1301-1312, 2013.
  • [3] X. Jin, J. Tang, X. Tang, S. Mi, J. Wu, Mi Liu and Z. Huang, “Effect of viscosity on sloshing in a rectangular tank with intermediate liquid depth,” Exp. Therm. Fluid Sci., vol. 118, pp. 110-148, 2020.
  • [4] M.S. Celebi and H. Akyildiz, “Nonlinear modeling of liquid sloshing in a moving rectangular tank,” Ocean Eng., vol. 29, no. 12, pp. 1527–1553, 2002.
  • [5] Y. M. Yu, N. Ma, S. M. Fan and X. C. Gu, “Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates,” Ocean Eng., vol. 129, pp. 217–227, 2016.
  • [6] S. P. Kim, S. M. Chung, W. J. Shin, D. S. Cho and J. C. Park, “Experimental study on sloshing reduction effects of baffles linked to a spring system,” Ocean Eng., vol. 170, pp. 136–147, 2018.
  • [7] T. Nasar and S. A. Sannasiraj, “Sloshing dynamics and performance of porous baffle arrangements in a barge carrying liquid tank”, Ocean Eng., vol. 183, pp. 24–39, 2019.
  • [8] R. Belakroum, M. Kadja, T. H. Mai and C. Maalouf, “An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid,” Mech. Res. Commun., vol. 37, no. 3, pp. 341–346, 2010.
  • [9] H. Akyildiz, “A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank,” J. Sound Vib., vol. 331, no.1, pp. 41–52, 2012.
  • [10] M. A. Goudarzi and S. R. Sabbagh-Yazdi, “Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles,” Ocean Eng., vol. 42, pp. 205–217, 2012.
  • [11] J. H. Jung, H. S. Yoon, C. Y. Lee and S. C. Shin, “Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank,” Ocean Eng., vol. 44, no. 79–89, 2012.
  • [12] H. Jin, Y. Liu and H. J. Li, “Experimental study on sloshing in a tank with an inner horizontal perforated plate,” Ocean Eng., vol. 82, pp. 75–84, 2014.
  • [13] F. C. Korkmaz and B. Güzel, “On the effects of the number of baffles in sloshing dynamics,” Ships and Offshore Structures, vol. 18, no. 1, pp. 21-33, 2023.
  • [14] Y. Kim, S. M. Hwang, S. E. Chun, Y. S. Suh, J. J. Park and Y. J. Lee, “Model-scale sloshing tests for an anti-sloshing blanket system,” Int. J. Offshore Polar Eng., vol. 23, no. 4, pp. 254–262, 2013.
  • [15] S.C Hwang, J. C. Park, H. Gotoh, A. Khayyer and K.J. Kang, “Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid- structure interaction analysis method,” Ocean Eng., vol. 118, pp. 227–241, 2016.
  • [16] V. S. Sanapala, M. Rajkumar, K. Velusamy and B. S. V. Patnaik, “Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container,” J. Fluids Struct., vol. 76, pp. 229–250, 2018.
  • [17] F. Koca ve M. Zabun, “Çoklu Bölmeli Kare Tankta Su Çalkalanmasının Sayısal Araştırması,” Avrupa Bilim ve Teknoloji Dergisi, c. 28, ss. 1062-1070, 2021.
  • [18] H. Akyildiz “Sloshing in a T-baffled rectangular storage tank numerical study for 2-D problems,” GİDB Dergi, s. 1, ss. 13–34, 2014.
  • [19] N. Cavalagli, C. Biscarini, A. L. Facci, F. Ubertini and S. Ubertini, “ Experimental and numerical analysis of energy dissipation in a sloshing absorber,” J. Fluids Struct., vol. 68, pp. 466–481, 2017.
  • [20] I. H. Cho and M. H. Kim, “Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank,” Ocean Eng., vol. 126, pp. 364–373, 2016.
  • [21] W. H. Tsao and Y. L. Huang, “Sloshing force in a rectangular tank with porous media,” Results in Engineering, vol. 11, 100250, 2021.
  • [22] F. C. Korkmaz, K. Yigit ve B. Guzel “Perde Tipi Engellerin Çalkantı Yüklerini Azaltma Etkileri Üzerine Deneysel Bir Çalışma,” El-Cezerî Fen ve Mühendislik Dergisi, c. 8, s. 3, ss. 1149-1157, 2021.
  • [23] G. Sahin and S. Bayraktar, “Flow Visualization of Sloshing in an Accelerated Two-Dimensional Rectangular Tank,” International Journal of Engıneerıng Technologies, vol. 1, no. 3, pp. 106-112, 2015.
  • [24] C. Seibi, A. Goharzadeh and L. Khezzar, “Water Sloshing in Rectangular Tanks– An Experimental Investigation Numerical Simulation,” Int. J. Eng., vol. 3, no. 3, pp. 174–184, 2009.
  • [25] M. S. Kirkgoz, “Impact Pressure of Breaking Waves on Vertical and Sloping Walls,” Ocean Engineering, vol. 18, no. 1-2, pp. 45-59, 1991.
  • [26] C. Lugni, M. Brocchini and O. M. Faltinsen, “Wave impact loads: The role of the flip-through,” Phys Fluids, vol. 18, 122101, 2006.
  • [27] D. Kisacik, P. Troch and P. Van Bogaert, “Description of loading conditions due to violent wave impacts on a vertical structure with an overhanging horizontal cantilever slab,” Coastal Eng., vol. 60, pp. 201–226, 2012.
  • [28] V.S. Sanapala, K. Velusamy and B.S.V. Patnaik, “Numerical study of coupled slosh modes in a 3D vessel subjected to multi-directional excitations,” Annals of Nuclear Energy, vol. 175, 109197, 2022.
  • [29] D. Z. Ning, P. Su and C. W. Zhang, “Experimental Study on A Sloshing Mitigation Concept Using Floating Layers of Solid Foam Elements,” China Ocean Eng., vol. 33, no. 1, pp. 34–43, 2019.
  • [30] A. Demir ve A. E. Dinçer, “Batık Minarelerde Su Seviyesinin Yapıya Olan Etkisinin Sayısal Olarak İncelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 11, s. 1, ss. 325-332, 2021.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tolga Bayramoğlu 0000-0003-3777-028X

Fatih Cüneyd Korkmaz 0000-0001-9250-5265

Yayımlanma Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Bayramoğlu, T., & Korkmaz, F. C. (2023). Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology, 11(3), 1194-1205. https://doi.org/10.29130/dubited.1081197
AMA Bayramoğlu T, Korkmaz FC. Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi. DÜBİTED. Temmuz 2023;11(3):1194-1205. doi:10.29130/dubited.1081197
Chicago Bayramoğlu, Tolga, ve Fatih Cüneyd Korkmaz. “Perde Tipi Engellerin Gözenek Oran Ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 11, sy. 3 (Temmuz 2023): 1194-1205. https://doi.org/10.29130/dubited.1081197.
EndNote Bayramoğlu T, Korkmaz FC (01 Temmuz 2023) Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology 11 3 1194–1205.
IEEE T. Bayramoğlu ve F. C. Korkmaz, “Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi”, DÜBİTED, c. 11, sy. 3, ss. 1194–1205, 2023, doi: 10.29130/dubited.1081197.
ISNAD Bayramoğlu, Tolga - Korkmaz, Fatih Cüneyd. “Perde Tipi Engellerin Gözenek Oran Ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 11/3 (Temmuz 2023), 1194-1205. https://doi.org/10.29130/dubited.1081197.
JAMA Bayramoğlu T, Korkmaz FC. Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi. DÜBİTED. 2023;11:1194–1205.
MLA Bayramoğlu, Tolga ve Fatih Cüneyd Korkmaz. “Perde Tipi Engellerin Gözenek Oran Ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology, c. 11, sy. 3, 2023, ss. 1194-05, doi:10.29130/dubited.1081197.
Vancouver Bayramoğlu T, Korkmaz FC. Perde Tipi Engellerin Gözenek Oran ve Konumlarının Çalkantıyı Sönümleme Etkisinin Sayısal Olarak İncelenmesi. DÜBİTED. 2023;11(3):1194-205.