MgAlSi Üçlü Alaşımının Üretimi ve in-vitro biyo Uyumluluk İncelemesi
Yıl 2023,
Cilt: 11 Sayı: 4, 2145 - 2154, 24.10.2023
Yusuf Sağır
,
Hanife Çakal
Esma Elmacı
Bünyamin Çiçek
Öz
Bu çalışmada biyo uyumlu Mg metali ile birlikte Al ve Si elementlerini içeren bir alaşım üretilmiştir. Üretim işlemi indüksiyon ocağında ergiterek yapılmıştır. MgAlSi üçlü alaşımı üretim sonrasında 350C/12 saat homojenleştirme ısıl işlemine alınmıştır. Elde edilen numunelere mikro yapı incelemesi için taramalı elektron mikroskobu (SEM) kullanılmıştır. Biyo uyumluluk incelemeleri için daldırma korozyon, potansiyodinamik korozyon ve sitotoksisite (MTT) olmak üzere 3 farklı test ile uygulanmıştır. Korozyon testleri Hank’s solüsyonu içerisinde gerçekleştirilmiştir. pH dengesi ve % canlılık oranı analizleri ile temel biyouyumluluk şartlarını taşıdığı sonucuna varılmıştır. Böylece yapının biyo malzeme olarak kullanımı tartışılmıştır.
Destekleyen Kurum
Tübitak
Proje Numarası
1919B012003943
Kaynakça
- [1] MÖ, P., "Magnesium Alloying, Some Potentials for Alloy Development," Journal of Japan Institute of Light Metals, vol. 42, no. 12, pp. 679-686, 1992.
- [2] Polmear, I., "Recent Developments in Light Alloys," Materials Transactions, vol. 37, no. 1, pp. 12-31, 1996.
- [3] Lee, Y., Dahle, A., St John, D., "The Role of Solute in Grain Refinement of Magnesium," Metallurgical and Materials Transactions A, vol. 31A, no. 11, pp. 2895-2906, 2000.
- [4] Levent, E., "Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik Ve Korozyon Özelliklerine Zn Ve Nd Elementlerinin Etkisi," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 3, pp. 1372-1382, 2022.
- [5] Froes, F., Eliezer, D., Aghion, E., "The Science, Technology, and Applications of Magnesium," The Journal of The Minerals, Metals & Materials Society (TMS), vol. 50, no. 9, pp. 30-34, 1998.
- [6] Furuya, H., Kogiso, N., Matunaga, S., Senda, K., Applications of Magnesium Alloys for Aerospace Structure Systems, Materials Science Forum, Trans Tech Publ, (2000) 341-348.
- [7] Bamberger, M., Dehm, G., "Trends in the Development of New Mg Alloys," Annu. Rev. Mater. Res., vol. 38, no. pp. 505-533, 2008.
- [8] Witte, F., "The History of Biodegradable Magnesium Implants: A Review," Acta Biomaterialia, vol. 6, no. 5, pp. 1680-1692, 2010.
- [9] Kannan, M. B., Koc, E., Unal, M., "Biodegradability of Β-Mg17al12 Phase in Simulated Body Fluid," Materials letters, vol. 82, no. pp. 54-56, 2012.
- [10] Wang, Q., Davidson, C., "Solidification and Precipitation Behaviour of Al-Si-Mg Casting Alloys," Journal of materials science, vol. 36, no. 3, pp. 739-750, 2001.
- [11] Çiçek, B., Ahlatçı, H., Sun, Y., "Wear Behaviours of Pb Added Mg–Al–Si Composites Reinforced with in Situ Mg2 Si Particles," Materials & Design, vol. 50, no. pp. 929-935, 2013.
- [12] Korgiopoulos, K., Langelier, B., Pekguleryuz, M., "Mg17al12 Phase Refinement and the Improved Mechanical Performance of Mg-6al Alloy with Trace Erbium Addition," Materials Science and Engineering: A, vol. no. pp. 141075, 2021.
- [13] Zhu, L., Qiu, F., Zou, Q., Han, X., Shu, S.-L., Yang, H.-Y., Jiang, Q.-C., "Multiscale Design of Α-Al, Eutectic Silicon and Mg2si Phases in Al-Si-Mg Alloy Manipulated by in Situ Nanosized Crystals," Materials Science and Engineering: A, vol. 802, no. pp. 140627, 2021.
- [14] Gu, X.-N., Zheng, Y.-F., "A Review on Magnesium Alloys as Biodegradable Materials," Front. Mater. Sci., vol. 4, no. 2, pp. 111-115, 2010.
- [15] Çiçek, B., Sun, Y., "A Study on the Mechanical and Corrosion Properties of Lead Added Magnesium Alloys," Mater Design, vol. 37, no. pp. 369-372, 2012.
- [16] Comba, A., Cicek, B., Comba, B., Sancak, T., Arslan Akveran, G., Sun, Y., Elen, L., Torkamanian Afshar, M., "Investigation of in-Vitro Biocompatibility and in-Vivo Biodegradability of Am Series Mg Alloys," Materials Technology, vol. no. pp. 1-13, 2022.
- [17] Shi, Z., Liu, M., Atrens, A., "Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation," Corros Sci, vol. 52, no. 2, pp. 579-588, 2010.
- [18] Atrens, A., Shi, Z., Mehreen, S. U., Johnston, S., Song, G.-L., Chen, X., Pan, F., "Review of Mg Alloy Corrosion Rates," Journal of Magnesium and Alloys, vol. no. pp. 2020.
- [19] ISO, 10993-12: 2008–Biological Evaluation of Medical Devices–Part 12: Sample Preparation and Reference Materials, in International Organization for Standardization, Geneva. 2008.
- [20] Alodan, M. A., "Modeling of Ph Distribution over Corrosion Sites," Journal of King Saud University-Engineering Sciences, vol. 15, no. 1, pp. 1-11, 2003.
- [21] Lu, P., Cao, L., Liu, Y., Xu, X., Wu, X., "Evaluation of Magnesium Ions Release, Biocorrosion, and Hemocompatibility of Mao/Plla‐Modified Magnesium Alloy We42," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 96, no. 1, pp. 101-109, 2011.
Production of MgAlSi Ternary Alloy and in-vitro bio Compatibility Investigation
Yıl 2023,
Cilt: 11 Sayı: 4, 2145 - 2154, 24.10.2023
Yusuf Sağır
,
Hanife Çakal
Esma Elmacı
Bünyamin Çiçek
Öz
In this study, an alloy containing Al and Si elements together with biocompatible Mg metal was produced. The production process was made by melting in an induction furnace. MgAlSi ternary alloy was subjected to 350C/12h homogenization heat treatment after production. Scanning electron microscope (SEM) was used to examine the microstructure of the obtained samples. For biocompatibility studies, it was applied with three different tests: immersion corrosion, potentiodynamic corrosion and cytotoxicity (MTT). Corrosion tests were carried out in Hank's solution. It has been concluded that it meets the basic biocompatibility conditions with pH balance and % vitality analysis. Thus, the use of the structure as a biomaterial is discussed.
Proje Numarası
1919B012003943
Kaynakça
- [1] MÖ, P., "Magnesium Alloying, Some Potentials for Alloy Development," Journal of Japan Institute of Light Metals, vol. 42, no. 12, pp. 679-686, 1992.
- [2] Polmear, I., "Recent Developments in Light Alloys," Materials Transactions, vol. 37, no. 1, pp. 12-31, 1996.
- [3] Lee, Y., Dahle, A., St John, D., "The Role of Solute in Grain Refinement of Magnesium," Metallurgical and Materials Transactions A, vol. 31A, no. 11, pp. 2895-2906, 2000.
- [4] Levent, E., "Biyobozunur Mg-Ag Alaşımlarının Mikroyapı, Mekanik Ve Korozyon Özelliklerine Zn Ve Nd Elementlerinin Etkisi," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 3, pp. 1372-1382, 2022.
- [5] Froes, F., Eliezer, D., Aghion, E., "The Science, Technology, and Applications of Magnesium," The Journal of The Minerals, Metals & Materials Society (TMS), vol. 50, no. 9, pp. 30-34, 1998.
- [6] Furuya, H., Kogiso, N., Matunaga, S., Senda, K., Applications of Magnesium Alloys for Aerospace Structure Systems, Materials Science Forum, Trans Tech Publ, (2000) 341-348.
- [7] Bamberger, M., Dehm, G., "Trends in the Development of New Mg Alloys," Annu. Rev. Mater. Res., vol. 38, no. pp. 505-533, 2008.
- [8] Witte, F., "The History of Biodegradable Magnesium Implants: A Review," Acta Biomaterialia, vol. 6, no. 5, pp. 1680-1692, 2010.
- [9] Kannan, M. B., Koc, E., Unal, M., "Biodegradability of Β-Mg17al12 Phase in Simulated Body Fluid," Materials letters, vol. 82, no. pp. 54-56, 2012.
- [10] Wang, Q., Davidson, C., "Solidification and Precipitation Behaviour of Al-Si-Mg Casting Alloys," Journal of materials science, vol. 36, no. 3, pp. 739-750, 2001.
- [11] Çiçek, B., Ahlatçı, H., Sun, Y., "Wear Behaviours of Pb Added Mg–Al–Si Composites Reinforced with in Situ Mg2 Si Particles," Materials & Design, vol. 50, no. pp. 929-935, 2013.
- [12] Korgiopoulos, K., Langelier, B., Pekguleryuz, M., "Mg17al12 Phase Refinement and the Improved Mechanical Performance of Mg-6al Alloy with Trace Erbium Addition," Materials Science and Engineering: A, vol. no. pp. 141075, 2021.
- [13] Zhu, L., Qiu, F., Zou, Q., Han, X., Shu, S.-L., Yang, H.-Y., Jiang, Q.-C., "Multiscale Design of Α-Al, Eutectic Silicon and Mg2si Phases in Al-Si-Mg Alloy Manipulated by in Situ Nanosized Crystals," Materials Science and Engineering: A, vol. 802, no. pp. 140627, 2021.
- [14] Gu, X.-N., Zheng, Y.-F., "A Review on Magnesium Alloys as Biodegradable Materials," Front. Mater. Sci., vol. 4, no. 2, pp. 111-115, 2010.
- [15] Çiçek, B., Sun, Y., "A Study on the Mechanical and Corrosion Properties of Lead Added Magnesium Alloys," Mater Design, vol. 37, no. pp. 369-372, 2012.
- [16] Comba, A., Cicek, B., Comba, B., Sancak, T., Arslan Akveran, G., Sun, Y., Elen, L., Torkamanian Afshar, M., "Investigation of in-Vitro Biocompatibility and in-Vivo Biodegradability of Am Series Mg Alloys," Materials Technology, vol. no. pp. 1-13, 2022.
- [17] Shi, Z., Liu, M., Atrens, A., "Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation," Corros Sci, vol. 52, no. 2, pp. 579-588, 2010.
- [18] Atrens, A., Shi, Z., Mehreen, S. U., Johnston, S., Song, G.-L., Chen, X., Pan, F., "Review of Mg Alloy Corrosion Rates," Journal of Magnesium and Alloys, vol. no. pp. 2020.
- [19] ISO, 10993-12: 2008–Biological Evaluation of Medical Devices–Part 12: Sample Preparation and Reference Materials, in International Organization for Standardization, Geneva. 2008.
- [20] Alodan, M. A., "Modeling of Ph Distribution over Corrosion Sites," Journal of King Saud University-Engineering Sciences, vol. 15, no. 1, pp. 1-11, 2003.
- [21] Lu, P., Cao, L., Liu, Y., Xu, X., Wu, X., "Evaluation of Magnesium Ions Release, Biocorrosion, and Hemocompatibility of Mao/Plla‐Modified Magnesium Alloy We42," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 96, no. 1, pp. 101-109, 2011.