Araştırma Makalesi
BibTex RIS Kaynak Göster

Vanadis 4E’nin Kaplamalı Matkaplarla Delinmesinde; Aşınma, Yüzey Pürüzlülüğü ve Talaş Oluşumunun İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 4, 2225 - 2235, 24.10.2023
https://doi.org/10.29130/dubited.1173170

Öz

Vanadis 4E, yüksek aşınma direncine ve çok iyi sünme özelliğine sahip, günümüz piyasasında yaygın olarak kullanılan çok yönlü toz metalurjik takım çeliğidir. Malzemelere uygulanan delme operasyonları, talaşlı imalat sektöründe yaygın olarak kullanılan işlemlerden biridir. Delme operasyonlarında, kullanılan malzemeye göre değişiklik gösterebilen kaplamalı veya kaplamasız matkaplar kullanılmaktadır. Bu çalışmada Vanadis 4E toz metalürjik çeliğe TiN kaplamalı HSS matkaplarla delme operasyonu uygulanmıştır. Çalışmada; 5, 8.5 ve 10.5 mm çapta matkaplar, 22, 23 ve 24 m/dak kesme hızları ve 0.10, 0.12 ve 0.14 mm/diş ilerleme oranları kullanılmıştır. Taguchi L9 ortogonal dizisi kullanılarak 9 deney yapılmış, deneyler sonrası malzeme deliklerden kesilerek, delik iç yüzeylerinden pürüzlülük değerleri ölçülmüştür. Ayrıca, deliklerin çevresindeki malzeme yüzeylerinden sertlik ölçümleri yapılmıştır. Deneylerde kullanılan matkapların deney sonrası optik mikroskop ile aşınma durumları incelenmiştir. Her bir deney sonrası oluşumları da incelenmiştir. 5 mm çaptaki matkapla en iyi pürüzlülük değeri 1. deneyde, 8.5 mm çaptaki matkapla yürütülen deneylerde en iyi pürüzlülük değeri 6 numaralı deneyde ve 10.5 mm çaptaki matkapta ise en iyi pürüzlülük değeri 7. deneyde elde edilmiştir. Matkaplarda ki aşınmalar değerlendirildiğinde, yan yüzey ve radyal aşınmaların oluştuğu görülmüştür.

Kaynakça

  • [1] Wikipedia (2022, December 12), Powder metallurgy [Online]. Available: https://en.wikipedia.org/wiki/Powder_metallurgy.
  • [2] Uddeholm (2022, September 8), Vanadis 4 Extra cutting data recommendations [Online]. Available: https://www.uddeholm.com/app/uploads/sites/41/2017/09/C_D_Vanadis-4-Extra-EN.pdf.
  • [3] T.V. SreeramaReddy, T. Sornakumar, M. VenkataramaReddy and R. Venkatram, “Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts”, Int. J. Refract Metal Hard Mater., vol. 27, pp. 181–185, 2009.
  • [4] A.A. Khan and, M.I. Ahmed, “Improving tool life using cryogenic cooling,” J Mater Process Technol, vol. 196 no. 1-3, pp. 149–154, 2008.
  • [5] Ş. Bayraktar, Y. Siyambaş ve Y. Turgut, “Delik delme prosesi: bir araştırma”, Sakarya University Journal of Science, c. 21, s. 2, ss. 120-130, 2017.
  • [6] S. Korucu ve G. Samtaş, “Vanadis 4E çeliğinin kaplamasız matkap uçlarıyla delinmesinde kesme parametrelerinin aşınma, yüzey pürüzlülüğü ve talaş oluşumuna etkisi”, DEÜ FMD, c. 23, s. 69, ss. 961-971, 2021.
  • [7] N. Ozsoy, “Prediction and optimization of thrust force during the drilling of AISI 2080 steel”, Materials Testing, vol. 64, no. 4, pp. 602-609, 2022.
  • [8] V. Vignesh, S. Satish, V. Gopi, J. Jishnoop and G. A. Menon, “Comparison of coated and uncoated HSS drill bit on surface roughness, material removal rate and dimensional accuracy of SS410 stainless steel”, Materials Today: Proceedings, vol. 58, no. 1, pp. 13-19, 2022.
  • [9] T. Kanagaraju, L.G. Babu, V.M. Madhavan, V. Sivaraman, B. Gowthaman, K. Arul and A. Thanikasalam, “Experimental analysis on drilling of super duplex stainless steel 2507 (SDSS 2507) using cryogenic LCO2 and MQL process”, Biomass Conv. Bioref. 2022. https://doi.org/10.1007/s13399-022-02536-8.
  • [10] A. Pal, S.S. Chatha and H.S. Sidhu, “Performance evaluation of various vegetable oils and distilled water as base fluids using eco-friendly MQL technique in drilling of AISI 321 stainless steel”, Int. J. of Precis. Eng. and Manuf.-Green Tech. vol. 9, pp. 745–764, 2022.
  • [11] M.A. Doğan, Ş. Yazman, L. Gemi, M. Yıldız and A. Yapıcı, "A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions," Composite Structures, vol. 297, pp. 1-27, 2022.
  • [12] P. Patel and V. Chaudhary, "Delamination evaluation in drilling of composite materials – A review," Materials Today: Proceedings, vol. 56, pp. 2690-2695, 2022.
  • [13] C. S. Rubi, U. Praksh, R. Cep and M. Elangovan, "Optimization of process variables in the drilling of LM6/B4C composites through Grey Relational Analysis," Materials, vol. 15, pp. 1-15, 2022.
  • [14] A. M. Kumar, R. Parameshwaran, R. Rajasekar, C. Moganapriy and R. Manivannan, "A review on drilling of fiber-reinforced polymer composites," Mechanics of Composite Materials, vol. 58, no. 1, pp. 97-112, 2022.
  • [15] M. Varatharajulu, G. Jayaprakash, N. Baskar, B. Suresh Kumar, S. Kannan and A. Haja Maideen, "Evaluation of desirability function approach and genetic algorithm optimization of drilling characteristics on Duplex 2205," Materials Today: Proceedings, vol. 22, no. 3, pp. 589-600, 2020.
  • [16] A. Rasti, M.H. Sadeghi and S.S. Farshi, "An investigation into the effect of surface integrity on the fatique failure of AISI 4340 steel in different drilling strategies," Engineering Failure Analysis, vol. 95, pp. 66-81, 2019.
  • [17] R. Çakıroğlu ve A. Acır, “Al2014 malzemesinin delinmesinde takım talaş ara yüzey sıcaklıkları ve kesme kuvvetinin Taguchi metodu ile optimizasyonu,” Makine Teknolojileri Elektronik Dergisi, c.10, s. 2, ss. 73-86, 2013.
  • [18] T. Meral and M. Günay, “Kaplamalı ve kaplamasız karbür matkap ile ferritik paslanmaz çeliğin delinebilirlik analizi,” Gazi Mühendislik Bilimleri Dergisi c. 5, s. 2, ss. 159-166, 2019.
  • [19] M. Mudhukrishnan, P. Hariharan and K. Palanikumar, "Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills," Measurement, vol. 149, pp. 1-10, 2020.
  • [20] H.B. Upputuri and V.S. Nimmagadda, "Optimization of drilling process parameters used in machining of glass fiber reinforced epoxy composite," Materials Today: Proceedings, vol. 23, no. 3, pp. 594-599, 2020.
  • [21] S. Ankalagi, V.N. Gaitonde and P. Petkar. "Experimental studies on hole quality in drilling of SA182 steel," Materials Today: Proceedings, vol. 4, no. 10, pp. 11201-11209, 2017
  • [22] R. Arif, G. Fromentin, F. Rossi, B. Marcon and P. Blandener, "Mechanical study in drilling of heat resistant austenitic stainless steel," Procedia CIRP, vol. 77, pp. 425-428, 2018.
  • [23] M. Yavuz, H. Gökçe, Ç. Yavaş, İ. Korkut and U. Şeker, "Effect of drill geometry on hole quality and cutting performance," Sakarya University Journal of Science, vol. 21, no. 5, pp. 1051-1066, 2017.
  • [24] M. Miklos, J. Holubjak, M. Drbul, İ. Danis, T. Czanova and J. Pilc, "Identification of tool wear drilling process of bearings steels C56E2 with microstructure of lamellar pearlite," Transportation Research Procedia, vol. 40, pp. 381-388, 2019.
  • [25] A.Z. Sultan, S. Sharif, F.M. Nor and D. Kurniawan, "Minimum quantity of lubricant drilling of stainless steel using refined palm olein: Effect of coating tool on surface roughness and tool wear," Procedia Manufacturing, vol. 30, pp. 427-434, 2019.
  • [26] S. Yaldız (2022, 8 Eylül). Takım aşınma mekanizmaları ve aşınma tipleri [Çevrimiçi]. Erişim: https://tf.selcuk.edu.tr/dosyalar/files/033003/4_takim_asinma_mekanizmalari_asinma_tipleri.pdf
  • [27] M. Yavuz, H. Gökçe nad U. Şeker, "Investigation of the effect of drill geometry on tool wear and chip formation", Gazi Journal of Engineering Science, vol. 3, no. 1, pp. 11-19, 2017.
  • [28] M.C. Çakır, A. Oran ve Y.E. Türker, “Sert malzemelerin delinmesi işleminde kaplama tiplerinin ve işleme parametrelerinin delme işlemine etkilerinin incelenmesi.” 4. Ulusal Talaşlı İmalat Sempozyumu, Kuşadası, Aydın, Türkiye, 2013.
  • [29] T. Kıvak, K. Habalı ve U. Şeker, “Inconel 718’in delinmesinde kesme parametrelerinin yüzey pürüzlülüğü ve talaş oluşumu üzerindeki etkisinin araştırılması”, Gazi Üniv. Müh. Mim. Fak. Der., c. 25, s. 2, ss. 293-298, 2010.

Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation

Yıl 2023, Cilt: 11 Sayı: 4, 2225 - 2235, 24.10.2023
https://doi.org/10.29130/dubited.1173170

Öz

Vanadis 4E is a versatile powder metallurgical tool steel widely used in today's market with high wear resistance and excellent yield properties. Drilling operations applied to materials are one of the operations commonly used in the machining industry. In drilling operations, coated or uncoated drills are used, which may vary according to the material used. This study applied drilling operation to Vanadis 4E powder metallurgical steel with TiN-coated HSS drills. In the study, Drills with diameters of 5, 8.5, and 10.5 mm, cutting speeds of 22, 23, and 24 m/min, and feed rates of 0.10, 0.12, and 0.14 mm/tooth was used. Nine experiments were carried out using the Taguchi L9 orthogonal array. After the experiments, the material was cut from the holes, and the roughness values were measured from the inner surfaces of the holes. In addition, hardness measurements were made from the material surfaces around the holes. The wear conditions of the drills used in the experiments were examined with an optical microscope after the experiment. The formations after each experiment were also examined. The best roughness value was obtained with the 5 mm diameter drill in the 1st experiment, the best roughness value was obtained in the experiments carried out with the 8.5 mm diameter drill in the 6th experiment, and the best roughness value was obtained in the 7th experiment for the 10.5 mm diameter drill. When the wear in the drills was evaluated, it was observed that the side surface and radial wear occurred.

Kaynakça

  • [1] Wikipedia (2022, December 12), Powder metallurgy [Online]. Available: https://en.wikipedia.org/wiki/Powder_metallurgy.
  • [2] Uddeholm (2022, September 8), Vanadis 4 Extra cutting data recommendations [Online]. Available: https://www.uddeholm.com/app/uploads/sites/41/2017/09/C_D_Vanadis-4-Extra-EN.pdf.
  • [3] T.V. SreeramaReddy, T. Sornakumar, M. VenkataramaReddy and R. Venkatram, “Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts”, Int. J. Refract Metal Hard Mater., vol. 27, pp. 181–185, 2009.
  • [4] A.A. Khan and, M.I. Ahmed, “Improving tool life using cryogenic cooling,” J Mater Process Technol, vol. 196 no. 1-3, pp. 149–154, 2008.
  • [5] Ş. Bayraktar, Y. Siyambaş ve Y. Turgut, “Delik delme prosesi: bir araştırma”, Sakarya University Journal of Science, c. 21, s. 2, ss. 120-130, 2017.
  • [6] S. Korucu ve G. Samtaş, “Vanadis 4E çeliğinin kaplamasız matkap uçlarıyla delinmesinde kesme parametrelerinin aşınma, yüzey pürüzlülüğü ve talaş oluşumuna etkisi”, DEÜ FMD, c. 23, s. 69, ss. 961-971, 2021.
  • [7] N. Ozsoy, “Prediction and optimization of thrust force during the drilling of AISI 2080 steel”, Materials Testing, vol. 64, no. 4, pp. 602-609, 2022.
  • [8] V. Vignesh, S. Satish, V. Gopi, J. Jishnoop and G. A. Menon, “Comparison of coated and uncoated HSS drill bit on surface roughness, material removal rate and dimensional accuracy of SS410 stainless steel”, Materials Today: Proceedings, vol. 58, no. 1, pp. 13-19, 2022.
  • [9] T. Kanagaraju, L.G. Babu, V.M. Madhavan, V. Sivaraman, B. Gowthaman, K. Arul and A. Thanikasalam, “Experimental analysis on drilling of super duplex stainless steel 2507 (SDSS 2507) using cryogenic LCO2 and MQL process”, Biomass Conv. Bioref. 2022. https://doi.org/10.1007/s13399-022-02536-8.
  • [10] A. Pal, S.S. Chatha and H.S. Sidhu, “Performance evaluation of various vegetable oils and distilled water as base fluids using eco-friendly MQL technique in drilling of AISI 321 stainless steel”, Int. J. of Precis. Eng. and Manuf.-Green Tech. vol. 9, pp. 745–764, 2022.
  • [11] M.A. Doğan, Ş. Yazman, L. Gemi, M. Yıldız and A. Yapıcı, "A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions," Composite Structures, vol. 297, pp. 1-27, 2022.
  • [12] P. Patel and V. Chaudhary, "Delamination evaluation in drilling of composite materials – A review," Materials Today: Proceedings, vol. 56, pp. 2690-2695, 2022.
  • [13] C. S. Rubi, U. Praksh, R. Cep and M. Elangovan, "Optimization of process variables in the drilling of LM6/B4C composites through Grey Relational Analysis," Materials, vol. 15, pp. 1-15, 2022.
  • [14] A. M. Kumar, R. Parameshwaran, R. Rajasekar, C. Moganapriy and R. Manivannan, "A review on drilling of fiber-reinforced polymer composites," Mechanics of Composite Materials, vol. 58, no. 1, pp. 97-112, 2022.
  • [15] M. Varatharajulu, G. Jayaprakash, N. Baskar, B. Suresh Kumar, S. Kannan and A. Haja Maideen, "Evaluation of desirability function approach and genetic algorithm optimization of drilling characteristics on Duplex 2205," Materials Today: Proceedings, vol. 22, no. 3, pp. 589-600, 2020.
  • [16] A. Rasti, M.H. Sadeghi and S.S. Farshi, "An investigation into the effect of surface integrity on the fatique failure of AISI 4340 steel in different drilling strategies," Engineering Failure Analysis, vol. 95, pp. 66-81, 2019.
  • [17] R. Çakıroğlu ve A. Acır, “Al2014 malzemesinin delinmesinde takım talaş ara yüzey sıcaklıkları ve kesme kuvvetinin Taguchi metodu ile optimizasyonu,” Makine Teknolojileri Elektronik Dergisi, c.10, s. 2, ss. 73-86, 2013.
  • [18] T. Meral and M. Günay, “Kaplamalı ve kaplamasız karbür matkap ile ferritik paslanmaz çeliğin delinebilirlik analizi,” Gazi Mühendislik Bilimleri Dergisi c. 5, s. 2, ss. 159-166, 2019.
  • [19] M. Mudhukrishnan, P. Hariharan and K. Palanikumar, "Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills," Measurement, vol. 149, pp. 1-10, 2020.
  • [20] H.B. Upputuri and V.S. Nimmagadda, "Optimization of drilling process parameters used in machining of glass fiber reinforced epoxy composite," Materials Today: Proceedings, vol. 23, no. 3, pp. 594-599, 2020.
  • [21] S. Ankalagi, V.N. Gaitonde and P. Petkar. "Experimental studies on hole quality in drilling of SA182 steel," Materials Today: Proceedings, vol. 4, no. 10, pp. 11201-11209, 2017
  • [22] R. Arif, G. Fromentin, F. Rossi, B. Marcon and P. Blandener, "Mechanical study in drilling of heat resistant austenitic stainless steel," Procedia CIRP, vol. 77, pp. 425-428, 2018.
  • [23] M. Yavuz, H. Gökçe, Ç. Yavaş, İ. Korkut and U. Şeker, "Effect of drill geometry on hole quality and cutting performance," Sakarya University Journal of Science, vol. 21, no. 5, pp. 1051-1066, 2017.
  • [24] M. Miklos, J. Holubjak, M. Drbul, İ. Danis, T. Czanova and J. Pilc, "Identification of tool wear drilling process of bearings steels C56E2 with microstructure of lamellar pearlite," Transportation Research Procedia, vol. 40, pp. 381-388, 2019.
  • [25] A.Z. Sultan, S. Sharif, F.M. Nor and D. Kurniawan, "Minimum quantity of lubricant drilling of stainless steel using refined palm olein: Effect of coating tool on surface roughness and tool wear," Procedia Manufacturing, vol. 30, pp. 427-434, 2019.
  • [26] S. Yaldız (2022, 8 Eylül). Takım aşınma mekanizmaları ve aşınma tipleri [Çevrimiçi]. Erişim: https://tf.selcuk.edu.tr/dosyalar/files/033003/4_takim_asinma_mekanizmalari_asinma_tipleri.pdf
  • [27] M. Yavuz, H. Gökçe nad U. Şeker, "Investigation of the effect of drill geometry on tool wear and chip formation", Gazi Journal of Engineering Science, vol. 3, no. 1, pp. 11-19, 2017.
  • [28] M.C. Çakır, A. Oran ve Y.E. Türker, “Sert malzemelerin delinmesi işleminde kaplama tiplerinin ve işleme parametrelerinin delme işlemine etkilerinin incelenmesi.” 4. Ulusal Talaşlı İmalat Sempozyumu, Kuşadası, Aydın, Türkiye, 2013.
  • [29] T. Kıvak, K. Habalı ve U. Şeker, “Inconel 718’in delinmesinde kesme parametrelerinin yüzey pürüzlülüğü ve talaş oluşumu üzerindeki etkisinin araştırılması”, Gazi Üniv. Müh. Mim. Fak. Der., c. 25, s. 2, ss. 293-298, 2010.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Salih Korucu 0000-0002-4391-0771

Gürkan Soy 0000-0002-0308-1702

Gürcan Samtaş 0000-0002-4111-7059

Yayımlanma Tarihi 24 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Korucu, S., Soy, G., & Samtaş, G. (2023). Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(4), 2225-2235. https://doi.org/10.29130/dubited.1173170
AMA Korucu S, Soy G, Samtaş G. Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation. DÜBİTED. Ekim 2023;11(4):2225-2235. doi:10.29130/dubited.1173170
Chicago Korucu, Salih, Gürkan Soy, ve Gürcan Samtaş. “Drilling Vanadis 4E With Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, sy. 4 (Ekim 2023): 2225-35. https://doi.org/10.29130/dubited.1173170.
EndNote Korucu S, Soy G, Samtaş G (01 Ekim 2023) Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 4 2225–2235.
IEEE S. Korucu, G. Soy, ve G. Samtaş, “Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation”, DÜBİTED, c. 11, sy. 4, ss. 2225–2235, 2023, doi: 10.29130/dubited.1173170.
ISNAD Korucu, Salih vd. “Drilling Vanadis 4E With Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/4 (Ekim 2023), 2225-2235. https://doi.org/10.29130/dubited.1173170.
JAMA Korucu S, Soy G, Samtaş G. Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation. DÜBİTED. 2023;11:2225–2235.
MLA Korucu, Salih vd. “Drilling Vanadis 4E With Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 11, sy. 4, 2023, ss. 2225-3, doi:10.29130/dubited.1173170.
Vancouver Korucu S, Soy G, Samtaş G. Drilling Vanadis 4E with Coated Drills; Examination of Wear, Surface Roughness, and Chip Formation. DÜBİTED. 2023;11(4):2225-3.