Araştırma Makalesi
BibTex RIS Kaynak Göster

Çimentosuz Kompozitlerde Tahribatlı ve Tahribatsız Testlerin Elektrisksel Direnç ile İlişkilendirilmesi

Yıl 2023, Cilt: 11 Sayı: 5, 2283 - 2292, 29.12.2023
https://doi.org/10.29130/dubited.1364092

Öz

İnşaat sektöründe, malzeme özelliklerini belirlemek için basınç dayanımı, yoğunluk, su emme ve prozite gibi testler sıklıkla kullanılmaktadır. Genel olarak deneysel çalışmalar tahribatlı ve tahribatsız muayene yöntemleri olarak iki kategoriye ayrılır. Ortak görüşe göre, tahribatlı muayene yöntemleri tahribatsız muayene yöntemlerine göre daha güvenilir sonuçlar üretir. Ancak tahribatlı testlerde numunelerin tekrar kullanılması mümkün olmamakta ve inşaat süreci tamamlanan binadan numune alınmasında zorluklar yaşanmaktadır. Ayrıca tahribatlı testlerin deneysel olarak uygulanması zaman ve maliyet açısından dezavantajlar doğurmaktadır. Bu çalışma kapsamında, son yıllarda sürdürülebilir çevre dostu kompozit yapı malzemeleri olarak ilgi gören alkali aktivasyonlu beton kompozitler üzerinde tahribatlı ve tahribatsız deneyler yapılmıştır. Basınç dayanımı, yoğunluk, prozite, su emme vb. geleneksel test yöntemleri elektriksel direnç ölçümleriyle ilişkilendirilmiştir. MEGGER ekipmanı ile elektriksel ölçümler alınmış ve direnç değerleri diğer parametrelerle doğrudan ilişkilendirilmiştir. Elde edilen olumlu sonuçlar, inşaat sektöründe kullanılan malzemelerin numune boyutu veya lokalizasyondan bağımsız olarak önerilen yöntemle değerlendirilebileceğini göstermektedir.

Kaynakça

  • [1] N. Wunderling et al., "Global warming overshoots increase risks of climate tipping cascades in a network model," Nature Climate Change, vol. 13, no. 1, pp. 75-82, 2023.
  • [2] R. Wu, Z. Tan, and B. Lin, "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, vol. 277, p. 127743, 2023.
  • [3] H. Elhegazy et al., "An exploratory study on the impact of the construction industry on climate change," Journal of Industrial Integration and Management, online, doi:10.1142/S2424862222500282, pp. 1-23, 2023.
  • [4] Ü. Yurt and F. Bekar, "Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative," Construction and Building Materials, vol. 320, p. 126230, 2022.
  • [5] H. R. Gavali, A. Bras, P. Faria, and R. V. Ralegaonkar, "Development of sustainable alkali-activated bricks using industrial wastes," Construction and Building Materials, vol. 215, pp. 180-191, 2019.
  • [6] G. F. Huseien and K. W. Shah, "Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation," Construction and Building Materials, vol. 235, p. 117458, 2020.
  • [7] G. Dokuzlar, B. Dündar, and Ü. Yurt, "Effect of recycled asphalt waste on mechanical properties of alkali-activated mortars," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Online, doi:10.1177/09544089231191621, 2023.
  • [8] Ü. Yurt, "An experimental study on fracture energy of alkali activated slag composites incorporated different fibers," Journal of Building Engineering, vol. 32, p. 101519, 2020.
  • [9] Ü. Yurt, "High performance cementless composites from alkali activated GGBFS," Construction and Building Materials, vol. 264, p. 120222, 2020.
  • [10] Ü. Yurt, B. Dündar, and E. Çınar, "Investigation of Sulfuric Acid Effect in Geopolymer Concrete," Düzce University Journal of Science and Technology, vol. 8, no. 2, pp. 1548-1561, 2020.
  • [11] Ü. Yurt and M. Emiroğlu, "The Effects of Curing Condition on Geopolymers Incorporating Zeolit," Academic Platform-Journal of Engineering Science, vol. 8, no. 2, pp. 396-402, 2020.
  • [12] Ü. Yurt, "Effect of Curing Temperature on Fracture Properties of Alkali-Activated Fiber Concrete," Osmaniye Korkut Ata University Journal of The Institute of Science and Technology, vol. 5, no. 1, pp. 176-188, 2022.
  • [13] Ü. Yurt and M. Emiroğlu, "Alkali Aktivasyonlu Kompozitlerde Hibrit Bağlayıcıların Etkileri," Beton 2023 Hazır Beton Fuarı ve Kongesi, İstanbul, Türkiye, Nov. 8-10, 2023.
  • [14] H. Ulugöl, M. F. Günal, İ. Ö. Yaman, G. Yıldırım, and M. Şahmaran, "Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction- and demolition-waste-based geopolymer composites," Cement and Concrete Composites, vol. 121, p. 104081, 2021.
  • [15] P. Payakaniti, S. Pinitsoonthorn, P. Thongbai, V. Amornkitbamrung, and P. Chindaprasirt, "Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite," Materials Today: Proceedings, vol. 5, no. 6, Part 1, pp. 14017-14025, 2018.
  • [16] M. Kupke, K. Schulte, and R. Schüler, "Non-destructive testing of FRP by d.c. and a.c. electrical methods," Composites Science and Technology, vol. 61, no. 6, pp. 837-847, 2001.
  • [17] C. Shi, "Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results," Cement and Concrete Research, vol. 34, no. 3, pp. 537-545, 2004.
  • [18] P. Gao, J. Wei, T. Zhang, J. Hu, and Q. Yu, "Modification of chloride diffusion coefficient of concrete based on the electrical conductivity of pore solution," Construction and Building Materials, vol. 145, pp. 361-366, 2017.
  • [19] P. Duchene, S. Chaki, A. Ayadi, and P. Krawczak, "A review of non-destructive techniques used for mechanical damage assessment in polymer composites," Journal of Materials Science, vol. 53, no. 11, pp. 7915-7938, 2018.
  • [20] H. Liu, K. Liu, Z. Lan, and D. Zhang, "Mechanical and Electrical Characteristics of Graphite Tailing Concrete," Advances in Materials Science and Engineering, vol. 2018, p. 9297628, 2018.
  • [21] X. Quan et al., "Influence of iron ore tailings by-product on the mechanical and electrical properties of carbon fiber reinforced cement-based composites," Journal of Building Engineering, vol. 45, p. 103567, 2022.
  • [22] Y. Ding, Z. Chen, Z. Han, Y. Zhang, and F. Pacheco-Torgal, "Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam," Construction and Building Materials, vol. 43, pp. 233-241, 2013.
  • [23] L. Li, Q. Zheng, S. Dong, X. Wang, and B. Han, "The reinforcing effects and mechanisms of multi-layer graphenes on mechanical properties of reactive powder concrete," Construction and Building Materials, vol. 251, p. 118995, 2020.
  • [24] A. O. Monteiro, P. B. Cachim, and P. M. F. J. Costa, "Electrical Properties of Cement-based Composites Containing Carbon Black Particles," Materials Today: Proceedings, vol. 2, no. 1, pp. 193-199, 2015.
  • [25] J. H. Kim, H.-K. Yoon, and J.-S. Lee, "Void ratio estimation of soft soils using electrical resistivity cone probe," Journal of Geotechnical and Geoenvironmental Engineering, vol. 137, no. 1, pp. 86-93, 2011.
  • [26] R. Ranade, J. Zhang, J. P. Lynch, and V. C. Li, "Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites," Cement and Concrete Research, vol. 58, pp. 1-12, 2014.
  • [27] H. K. Kim, I. W. Nam, and H. K. Lee, "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume," Composite Structures, vol. 107, pp. 60-69, 2014.
  • [28] S. Çelikten, M. Sarıdemir, and İ. Ö Deneme, "Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature," Construction and Building Materials, vol. 217, pp. 50-61, 2019.

Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites

Yıl 2023, Cilt: 11 Sayı: 5, 2283 - 2292, 29.12.2023
https://doi.org/10.29130/dubited.1364092

Öz

In the construction industry, tests such as compressive strength, density porosity, and water absorption porosity are frequently used to determine material properties. In general, experimental studies are divided into two categories: destructive and non-destructive testing methods. According to the common consensus, destructive testing methods produce more dependable results than non-destructive testing methods. However, it is not possible to reuse the samples in destructive tests, and there are difficulties in taking samples from the building whose construction process has been completed. In addition, the experimental implementation of destructive tests creates time and cost disadvantages. Within the scope of this study, destructive and non-destructive experiments have been carried out on alkali-activated concrete composites, which have attracted interest as sustainable environmentally friendly composite building materials in recent years. Compressive strength, density, porosity, water absorption, etc. traditional test methods have been associated with electrical resistance measurements. Electrical measurements have been taken with the MEGGER equipment, and resistance values have been directly correlated with the other parameters. The positive results indicate that different structures of materials used in the construction industry can be evaluated regardless of sample size or localization.

Kaynakça

  • [1] N. Wunderling et al., "Global warming overshoots increase risks of climate tipping cascades in a network model," Nature Climate Change, vol. 13, no. 1, pp. 75-82, 2023.
  • [2] R. Wu, Z. Tan, and B. Lin, "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, vol. 277, p. 127743, 2023.
  • [3] H. Elhegazy et al., "An exploratory study on the impact of the construction industry on climate change," Journal of Industrial Integration and Management, online, doi:10.1142/S2424862222500282, pp. 1-23, 2023.
  • [4] Ü. Yurt and F. Bekar, "Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative," Construction and Building Materials, vol. 320, p. 126230, 2022.
  • [5] H. R. Gavali, A. Bras, P. Faria, and R. V. Ralegaonkar, "Development of sustainable alkali-activated bricks using industrial wastes," Construction and Building Materials, vol. 215, pp. 180-191, 2019.
  • [6] G. F. Huseien and K. W. Shah, "Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation," Construction and Building Materials, vol. 235, p. 117458, 2020.
  • [7] G. Dokuzlar, B. Dündar, and Ü. Yurt, "Effect of recycled asphalt waste on mechanical properties of alkali-activated mortars," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Online, doi:10.1177/09544089231191621, 2023.
  • [8] Ü. Yurt, "An experimental study on fracture energy of alkali activated slag composites incorporated different fibers," Journal of Building Engineering, vol. 32, p. 101519, 2020.
  • [9] Ü. Yurt, "High performance cementless composites from alkali activated GGBFS," Construction and Building Materials, vol. 264, p. 120222, 2020.
  • [10] Ü. Yurt, B. Dündar, and E. Çınar, "Investigation of Sulfuric Acid Effect in Geopolymer Concrete," Düzce University Journal of Science and Technology, vol. 8, no. 2, pp. 1548-1561, 2020.
  • [11] Ü. Yurt and M. Emiroğlu, "The Effects of Curing Condition on Geopolymers Incorporating Zeolit," Academic Platform-Journal of Engineering Science, vol. 8, no. 2, pp. 396-402, 2020.
  • [12] Ü. Yurt, "Effect of Curing Temperature on Fracture Properties of Alkali-Activated Fiber Concrete," Osmaniye Korkut Ata University Journal of The Institute of Science and Technology, vol. 5, no. 1, pp. 176-188, 2022.
  • [13] Ü. Yurt and M. Emiroğlu, "Alkali Aktivasyonlu Kompozitlerde Hibrit Bağlayıcıların Etkileri," Beton 2023 Hazır Beton Fuarı ve Kongesi, İstanbul, Türkiye, Nov. 8-10, 2023.
  • [14] H. Ulugöl, M. F. Günal, İ. Ö. Yaman, G. Yıldırım, and M. Şahmaran, "Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction- and demolition-waste-based geopolymer composites," Cement and Concrete Composites, vol. 121, p. 104081, 2021.
  • [15] P. Payakaniti, S. Pinitsoonthorn, P. Thongbai, V. Amornkitbamrung, and P. Chindaprasirt, "Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite," Materials Today: Proceedings, vol. 5, no. 6, Part 1, pp. 14017-14025, 2018.
  • [16] M. Kupke, K. Schulte, and R. Schüler, "Non-destructive testing of FRP by d.c. and a.c. electrical methods," Composites Science and Technology, vol. 61, no. 6, pp. 837-847, 2001.
  • [17] C. Shi, "Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results," Cement and Concrete Research, vol. 34, no. 3, pp. 537-545, 2004.
  • [18] P. Gao, J. Wei, T. Zhang, J. Hu, and Q. Yu, "Modification of chloride diffusion coefficient of concrete based on the electrical conductivity of pore solution," Construction and Building Materials, vol. 145, pp. 361-366, 2017.
  • [19] P. Duchene, S. Chaki, A. Ayadi, and P. Krawczak, "A review of non-destructive techniques used for mechanical damage assessment in polymer composites," Journal of Materials Science, vol. 53, no. 11, pp. 7915-7938, 2018.
  • [20] H. Liu, K. Liu, Z. Lan, and D. Zhang, "Mechanical and Electrical Characteristics of Graphite Tailing Concrete," Advances in Materials Science and Engineering, vol. 2018, p. 9297628, 2018.
  • [21] X. Quan et al., "Influence of iron ore tailings by-product on the mechanical and electrical properties of carbon fiber reinforced cement-based composites," Journal of Building Engineering, vol. 45, p. 103567, 2022.
  • [22] Y. Ding, Z. Chen, Z. Han, Y. Zhang, and F. Pacheco-Torgal, "Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam," Construction and Building Materials, vol. 43, pp. 233-241, 2013.
  • [23] L. Li, Q. Zheng, S. Dong, X. Wang, and B. Han, "The reinforcing effects and mechanisms of multi-layer graphenes on mechanical properties of reactive powder concrete," Construction and Building Materials, vol. 251, p. 118995, 2020.
  • [24] A. O. Monteiro, P. B. Cachim, and P. M. F. J. Costa, "Electrical Properties of Cement-based Composites Containing Carbon Black Particles," Materials Today: Proceedings, vol. 2, no. 1, pp. 193-199, 2015.
  • [25] J. H. Kim, H.-K. Yoon, and J.-S. Lee, "Void ratio estimation of soft soils using electrical resistivity cone probe," Journal of Geotechnical and Geoenvironmental Engineering, vol. 137, no. 1, pp. 86-93, 2011.
  • [26] R. Ranade, J. Zhang, J. P. Lynch, and V. C. Li, "Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites," Cement and Concrete Research, vol. 58, pp. 1-12, 2014.
  • [27] H. K. Kim, I. W. Nam, and H. K. Lee, "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume," Composite Structures, vol. 107, pp. 60-69, 2014.
  • [28] S. Çelikten, M. Sarıdemir, and İ. Ö Deneme, "Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature," Construction and Building Materials, vol. 217, pp. 50-61, 2019.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sensör Teknolojisi , Yüksek Gerilim, Yapı Malzemeleri, İnşaat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ümit Yurt 0000-0001-6009-6786

Barış Kır 0000-0002-5043-8567

Yunus Bicen 0000-0001-8712-2286

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 5

Kaynak Göster

APA Yurt, Ü., Kır, B., & Bicen, Y. (2023). Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(5), 2283-2292. https://doi.org/10.29130/dubited.1364092
AMA Yurt Ü, Kır B, Bicen Y. Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites. DÜBİTED. Aralık 2023;11(5):2283-2292. doi:10.29130/dubited.1364092
Chicago Yurt, Ümit, Barış Kır, ve Yunus Bicen. “Correlation of Destructive and Non-Destructive Tests With Electrical Resistance in Cementless Composites”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, sy. 5 (Aralık 2023): 2283-92. https://doi.org/10.29130/dubited.1364092.
EndNote Yurt Ü, Kır B, Bicen Y (01 Aralık 2023) Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 5 2283–2292.
IEEE Ü. Yurt, B. Kır, ve Y. Bicen, “Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites”, DÜBİTED, c. 11, sy. 5, ss. 2283–2292, 2023, doi: 10.29130/dubited.1364092.
ISNAD Yurt, Ümit vd. “Correlation of Destructive and Non-Destructive Tests With Electrical Resistance in Cementless Composites”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/5 (Aralık 2023), 2283-2292. https://doi.org/10.29130/dubited.1364092.
JAMA Yurt Ü, Kır B, Bicen Y. Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites. DÜBİTED. 2023;11:2283–2292.
MLA Yurt, Ümit vd. “Correlation of Destructive and Non-Destructive Tests With Electrical Resistance in Cementless Composites”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 11, sy. 5, 2023, ss. 2283-92, doi:10.29130/dubited.1364092.
Vancouver Yurt Ü, Kır B, Bicen Y. Correlation of Destructive and Non-Destructive Tests with Electrical Resistance in Cementless Composites. DÜBİTED. 2023;11(5):2283-92.