Al/(ZnFe2O4-PVA)/P-Si Yapılarda, Empedans ve Arayüz Durumlarının Frekansa Bağlı Analizi
Yıl 2024,
Cilt: 12 Sayı: 4, 1964 - 1976, 23.10.2024
Jaafar Alsmael
,
Nuray Urgun
,
Seçkin Altındal Yerişkin
,
Serhat Orkun Tan
Öz
Bu çalışmada çinko ferrit (ZnFe2O4) katkılı polivinil alkolden (PVA) yapılmış bir filmin özellikleri araştırılmaktadır. Film, alüminyum (Al) ve p-Si yapı arasına sıkıştırılmış olup, yapı üzerinde voltajın yanı sıra geniş bir frekans aralığında elektriksel ölçümler yapılmıştır. Çalışma, ZnFe2O4-PVA ara katmanının yüzey durumları (NSS) ve kompleks empedans (Z* = Z' - jZ'') üzerine etkilerini değerlendirmektedir. Orta ve yüksek frekanslarda seri direnç (RS) ve ara katman değerlerinin kapasitans-gerilim (C-V) ve iletkenlik-gerilim (G/ω-V) özellikleri üzerinde dikkate değer bir etkisi gözlemlenmiştir. Bu nedenle, RS etkisini ortadan kaldırmak için C-V ve G/ω-V değerleri yüksek frekansta düzenlenmiştir. NSS değerlerini tahmin etmek için Hill-Coleman yaklaşımı kullanıldı. Deneysel sonuçlar hem NSS hem de RS’in ve metal-polimer-yarı iletken (MPS) yapısındaki ara katmanın, elektriksel ve dielektrik özellikleri önemli ölçüde değiştiren kritik faktörler olduğunu doğrulamaktadır. Empedans çalışmasından elde edilen sonuçların analizi farklı davranışlar gösterdi. Arayüzey ile dipol polarizasyonunun karşılıklı etkisi sonucunda empedans değerlerinin düşük frekansta arttığı, yüksek frekanslarda ise azaldığı gözlenmiştir. Çalışma, yüksek dielektrik değeri nedeniyle ZnFe2O4-PVA ara katmanının, yük/enerji depolaması için geleneksel yalıtkanlara nazaran daha iyi bir alternatif olabileceğini öne sürmektedir.
Kaynakça
- [1] K. Akarvardar and H.-S. P. Wong, “Technology Prospects for Data-Intensive Computing,” Proc. IEEE, vol. 111, no. 1, pp. 92–112, 2023, doi: 10.1109/jproc.2022.3218057.
- [2] B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications,” Springer Science & Business Media, NY, 2013.
- [3] S. Alptekin, S. O. Tan, and Ş. Altındal, “Determination of Surface States Energy Density Distributions and Relaxation Times for a Metal-Polymer-Semiconductor Structure,” IEEE Trans. Nanotechnol., vol. 18, pp. 1196–1199, 2019, doi: 10.1109/TNANO.2019.2952081.
- [4] Ş. Altındal, T. Tunç, H. Tecimer, and İ. Yücedağ, “Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250W illumination level,” Mater. Sci. Semicond. Process., vol. 28, pp. 48–53, 2014, doi: 10.1016/j.mssp.2014.05.007.
- [5] S. O. Tan, “Comparison of Graphene and Zinc Dopant Materials for Organic Polymer Interfacial Layer Between Metal Semiconductor Structure,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5121–5127, 2017, doi: 10.1109/TED.2017.2766289.
- [6] J. A. M. Alsmael, N. Urgun, S. O. Tan, and H. Tecimer “Effectuality of the Frequency Levels on the C&G/ω–V Data of the Polymer Interlayered Metal-Semiconductor Structure,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 9, no. 4, pp. 554–561, 2022, doi: 10.54287/gujsa.1206332.
- [7] A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, “Structural, magnetic and electrical properties of nanocrystalline zinc ferrite,” J. Alloys Compd., vol. 509, no. 9, pp. 3917–3923, 2011, doi: 10.1016/j.jallcom.2010.12.168.
- [8] A. Buyukbas-Uluşan, S. A. Yerişkin, A. Tataroğlu, M. Balbaşı, and Y. A. Kalandaragh, “Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 10, pp. 8234–8243, 2018, doi: 10.1007/s10854-018-8830-9.
- [9] Ç. Oruç, A. Erkol, and A. Altındal, “Characterization of metal (Ag,Au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique,” Thin Solid Films, vol. 636, pp. 765–772, 2017, doi: 10.1016/j.tsf.2017.03.058.
- [10] A. M. Akbaş, A. Tataroğlu, Ş. Altındal, and Y. Azizian-Kalandaragh, “Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 6, pp. 7657–7670, 2021, doi: 10.1007/s10854-021-05482-9.
- [11] A. Ashery, M. M. M. Elnasharty, M. A. Salem, and A. E. H. Gaballah, “Synthesis, characterization, and electrical properties of CuInGaSe2/SiO2/n-Si structure,” Opt. Quantum Electron., vol. 53, no. 10, pp. 1–22, 2021, doi: 10.1007/s11082-021-03196-0.
- [12] M. Y. Haik, A. I. Ayesh, T. Abdulrehman, and Y. Haik, “Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements,” Mater. Lett., vol. 124, pp. 67–72, 2014, doi: 10.1016/j.matlet.2014.03.070.
- [13] A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications,” ACS Appl. Energy Mater., vol. 3, no. 1, pp. 66–98, 2020, doi: 10.1021/acsaem.9b01965.
- [14] J. M. Hadi et al., “Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites,” Membranes, vol. 10, no. 7, p. 151, 2020, doi: 10.3390/membranes10070151.
- [15] N. Baraz et al., “Electric and Dielectric Properties of Au/ZnS-PVA/n-Si (MPS) Structures in the Frequency Range of 10–200 kHz,” J. Electron. Mater., vol. 46, no. 7, pp. 4276–4286, 2017, doi: 10.1007/s11664-017-5363-6.
- [16] M. Kırkbınar and F. Çalışkan, “Biyolojik Yöntem ile GO Katkılı Al/(Biyo-ZnO)/pSi Schottky Diyotların Üretimi ve Elektriksel Karakterizasyonu”, DÜBİTED, vol. 11, no. 3, pp. 1623–1634, 2023, doi: 10.29130/dubited.1171313.
- [17] Ç. Ş. Güçlü, Ş. Altındal, and E. E. Tanrikulu, “Voltage and frequency reliant interface traps and their lifetimes of the MPS structures interlayered with CdTe:PVA via the admittance method,” Physica B Condens. Matter, vol. 677, p. 415703, 2024, doi: 10.1016/j.physb.2024.415703.
[18] F. Ş. Kaya, “Cr/Klorofil-a/n-GaP/Ag Aygıtının Akım-Gerilim Karakteristiklerinin İncelenmesi”, DUBİTED, vol. 11, no. 4, pp. 1996–2005, 2023, doi: 10.29130/dubited.1271979.
- [19] M. Yürekli, A. F. Özdemir, and Ş. Altındal, “Investigation of dielectric and electric modulus properties of Al/p-Si structures with pure, 3%, and 5% (graphene:PVA) by impedance spectroscopy, ” J. Mater Sci.: Mater. Electron., vol 35, no. 6, p. 422, 2024, doi: 10.1007/s10854-024-12077-7.
[20] Y. Yang et al., “Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications,” J. Mater. Chem., vol. 1, no. 16, pp. 2875–2885, 2013, doi: 10.1039/C3TC00790A.
- [21] M. F. Hossain, T. C. Paul, M. N. I. Khan, S. Islam, and P. Bala, “Magnetic and dielectric properties of ZnFe2O4/nanoclay composites synthesized via sol-gel autocombustion,” Mater. Chem. Phys., vol. 271, p. 124914, 2021, doi: 10.1016/j.matchemphys.2021.124914.
- [22] G. Fan, Z. Gu, L. Yang, and F. Li, “Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique,” Chem. Eng. J., vol. 155, no. 1, pp. 534–541, 2009, doi: 10.1016/j.cej.2009.08.008.
- [23] S. Zahi, “Nickel–zinc ferrite fabricated by sol–gel route and application in high-temperature superconducting magnetic energy storage for voltage sag solving,” Mater. Des., vol. 31, no. 4, pp. 1848–1853, 2010, doi: 10.1016/j.matdes.2009.11.004.
- [24] M. Sultan and R. Singh, “Magnetic and optical properties of rf-sputtered zinc ferrite thin films,” J. Appl. Phys., vol. 105, no. 7, p. 07A512, 2009, doi: 10.1063/1.3072381.
- [25] R. Schmidt, P. Mayrhofer, U. Schmid, and A. Bittner, “Impedance spectroscopy of Al/AlN/n-Si metal-insulator-semiconductor (MIS) structures,” J. Appl. Phys., vol. 125, no. 8, p. 84501, 2019, doi: 10.1063/1.5050181.
- [26] J. A. M. Alsmael, S. O. Tan, H. U. Tecimer, Ş. Altındal, and Y. A. Kalandaragh, “The Impact of Dopant on the Dielectric Properties of Metal-Semiconductor With ZnFe2O4 Doped Organic Polymer Nanocomposites Interlayer,” IEEE Trans. Nanotechnol., vol. 21, pp. 528–533, 2022, doi: 10.1109/TNANO.2022.3207900.
- [27] H. Kanbur, Ş. Altındal, and A. Tataroğlu, “The effect of interface states, excess capacitance and series resistance in the Al/SiO2/p-Si Schottky diodes,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1732–1738, 2005, doi: 10.1016/j.apsusc.2005.03.122.
- [28] H.-K. Lee, I. Jyothi, V. Janardhanam, K-H. Shim, H-J. Yun, S-N. Lee, H. Hong, J-C. Jeong, and C-J. Choi, “Effects of Ta-oxide interlayer on the Schottky barrier parameters of Ni/n-type Ge Schottky barrier diode,” Microelectron. Eng., vol. 163, pp. 26–31, 2016, doi: 10.1016/j.mee.2016.06.006.
- [29] Ş. Altındal, A. Tataroğlu, and İ. Dökme, “Density of interface states, excess capacitance and series resistance in the metal–insulator–semiconductor (MIS) solar cells,” Sol. Energy Mater. Sol. Cells, vol. 85, no. 3, pp. 345–358, 2005, doi: 10.1016/j.solmat.2004.05.004.
- [30] D. Ata, S. Altındal Yeriskin, A. Tataroğlu, and M. Balbasi, “Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure,” J. Phys. Chem. Solids, vol. 169, p. 110861, 2022, doi: 10.1016/j.jpcs.2022.110861.
- [31] M. Sharma, S. K. Tripathi, “Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes,” Mater. Sci. in Semicond. Process., vol. 41 pp. 155-161, 2016, doi: 10.1016/j.mssp.2015.07.028.
- [32] Z. Berktas, E. Orhan, M. Ulusoy, M. Yildiz, and S. Altındal, “Negative capacitance behavior at low frequencies of nitrogen-doped polyethylenimine-functionalized graphene quantum dots-based Structure,” ACS Appl. Electron. Mater., vol. 5, no. 3, pp. 1804–1811, 2023, doi: 10.1021/acsaelm.3c00011.
- [33] E. E. Tanrıkulu, S. Demirezen, Ş. Altındal, and İ. Uslu, “On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(% 7 Zn-PVA)/p-Si (MPS) structure,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 4, pp. 2890–2898, 2018, doi: 10.1007/s10854-017-8219-1.
- [34] S. Demirezen, E. E. Tanrıkulu, and Altındal, “The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors,” Indian J. Phys., vol.93, no. 6, pp. 739–747, 2019, doi: 10.1007/s12648-018-1355-5.
- [35] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. John Wiley & Sons, 2002.
- [36] H. Tecimer, H. Uslu, Z. A. Alahmed, F. Yakuphanoǧlu, and S. Altindal, “On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs),” Compos. Part B Eng., vol. 57, pp. 25–30, 2014, doi: 10.1016/j.compositesb.2013.09.040.
- [37] W. A. Hill and C. C. Coleman, “A single-frequency approximation for interface-state density determination,” Solid. State. Electron., vol. 23, no. 9, pp. 987–993, 1980, doi: 10.1016/0038-1101(80)90064-7.
Impedance and Interface States Depending on Frequency Analysis of Al/(ZnFe2O4-PVA)/p-Si Structures
Yıl 2024,
Cilt: 12 Sayı: 4, 1964 - 1976, 23.10.2024
Jaafar Alsmael
,
Nuray Urgun
,
Seçkin Altındal Yerişkin
,
Serhat Orkun Tan
Öz
This study investigates the properties of a film made of zinc ferrite (ZnFe2O4) doped polyvinyl alcohol (PVA). The film is sandwiched between an aluminum (Al) and p-Si semiconductor layers, and electrical measurements are conducted on the structure in a wide scope of frequency besides voltage. The study evaluates the impacts of the ZnFe2O4-PVA interlayer on surface-states (NSS), and complex-impedance (Z* = Z' - jZ''). A remarkable impact of the values of series resistance (RS) and the interlayer on the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) data has been observed at moderate and high frequencies. Hence, the C and G/ω versus V qualities were modified at high frequency to eliminate the outcome of RS. The Hill-Coleman approach was utilized to estimate the values for NSS. Experimental results confirm that both the NSS , RS and the interlayer in the metal-polymer-semiconductor (MPS) structures are critical factors that significantly alter the electrical and dielectric properties. The analysis of the results obtained from the impedance study showed divergent behavior. It was observed that the impedance values increase in the low frequency, while they diminish in the higher frequencies, as a result of the mutual effect between the interface and the dipole polarization. The study suggests that due to its high dielectric value, the ZnFe2O4-PVA interlayer may be a better alternative to conventional insulators for charge/energy storage.
Etik Beyan
It is declared that scientific and ethical principles have been followed while carrying out and writing this study and that all the sources used have been properly cited.
Kaynakça
- [1] K. Akarvardar and H.-S. P. Wong, “Technology Prospects for Data-Intensive Computing,” Proc. IEEE, vol. 111, no. 1, pp. 92–112, 2023, doi: 10.1109/jproc.2022.3218057.
- [2] B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications,” Springer Science & Business Media, NY, 2013.
- [3] S. Alptekin, S. O. Tan, and Ş. Altındal, “Determination of Surface States Energy Density Distributions and Relaxation Times for a Metal-Polymer-Semiconductor Structure,” IEEE Trans. Nanotechnol., vol. 18, pp. 1196–1199, 2019, doi: 10.1109/TNANO.2019.2952081.
- [4] Ş. Altındal, T. Tunç, H. Tecimer, and İ. Yücedağ, “Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250W illumination level,” Mater. Sci. Semicond. Process., vol. 28, pp. 48–53, 2014, doi: 10.1016/j.mssp.2014.05.007.
- [5] S. O. Tan, “Comparison of Graphene and Zinc Dopant Materials for Organic Polymer Interfacial Layer Between Metal Semiconductor Structure,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5121–5127, 2017, doi: 10.1109/TED.2017.2766289.
- [6] J. A. M. Alsmael, N. Urgun, S. O. Tan, and H. Tecimer “Effectuality of the Frequency Levels on the C&G/ω–V Data of the Polymer Interlayered Metal-Semiconductor Structure,” Gazi Univ. J. Sci. Part A: Eng. Innov., vol. 9, no. 4, pp. 554–561, 2022, doi: 10.54287/gujsa.1206332.
- [7] A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, “Structural, magnetic and electrical properties of nanocrystalline zinc ferrite,” J. Alloys Compd., vol. 509, no. 9, pp. 3917–3923, 2011, doi: 10.1016/j.jallcom.2010.12.168.
- [8] A. Buyukbas-Uluşan, S. A. Yerişkin, A. Tataroğlu, M. Balbaşı, and Y. A. Kalandaragh, “Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 10, pp. 8234–8243, 2018, doi: 10.1007/s10854-018-8830-9.
- [9] Ç. Oruç, A. Erkol, and A. Altındal, “Characterization of metal (Ag,Au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique,” Thin Solid Films, vol. 636, pp. 765–772, 2017, doi: 10.1016/j.tsf.2017.03.058.
- [10] A. M. Akbaş, A. Tataroğlu, Ş. Altındal, and Y. Azizian-Kalandaragh, “Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 6, pp. 7657–7670, 2021, doi: 10.1007/s10854-021-05482-9.
- [11] A. Ashery, M. M. M. Elnasharty, M. A. Salem, and A. E. H. Gaballah, “Synthesis, characterization, and electrical properties of CuInGaSe2/SiO2/n-Si structure,” Opt. Quantum Electron., vol. 53, no. 10, pp. 1–22, 2021, doi: 10.1007/s11082-021-03196-0.
- [12] M. Y. Haik, A. I. Ayesh, T. Abdulrehman, and Y. Haik, “Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements,” Mater. Lett., vol. 124, pp. 67–72, 2014, doi: 10.1016/j.matlet.2014.03.070.
- [13] A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications,” ACS Appl. Energy Mater., vol. 3, no. 1, pp. 66–98, 2020, doi: 10.1021/acsaem.9b01965.
- [14] J. M. Hadi et al., “Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites,” Membranes, vol. 10, no. 7, p. 151, 2020, doi: 10.3390/membranes10070151.
- [15] N. Baraz et al., “Electric and Dielectric Properties of Au/ZnS-PVA/n-Si (MPS) Structures in the Frequency Range of 10–200 kHz,” J. Electron. Mater., vol. 46, no. 7, pp. 4276–4286, 2017, doi: 10.1007/s11664-017-5363-6.
- [16] M. Kırkbınar and F. Çalışkan, “Biyolojik Yöntem ile GO Katkılı Al/(Biyo-ZnO)/pSi Schottky Diyotların Üretimi ve Elektriksel Karakterizasyonu”, DÜBİTED, vol. 11, no. 3, pp. 1623–1634, 2023, doi: 10.29130/dubited.1171313.
- [17] Ç. Ş. Güçlü, Ş. Altındal, and E. E. Tanrikulu, “Voltage and frequency reliant interface traps and their lifetimes of the MPS structures interlayered with CdTe:PVA via the admittance method,” Physica B Condens. Matter, vol. 677, p. 415703, 2024, doi: 10.1016/j.physb.2024.415703.
[18] F. Ş. Kaya, “Cr/Klorofil-a/n-GaP/Ag Aygıtının Akım-Gerilim Karakteristiklerinin İncelenmesi”, DUBİTED, vol. 11, no. 4, pp. 1996–2005, 2023, doi: 10.29130/dubited.1271979.
- [19] M. Yürekli, A. F. Özdemir, and Ş. Altındal, “Investigation of dielectric and electric modulus properties of Al/p-Si structures with pure, 3%, and 5% (graphene:PVA) by impedance spectroscopy, ” J. Mater Sci.: Mater. Electron., vol 35, no. 6, p. 422, 2024, doi: 10.1007/s10854-024-12077-7.
[20] Y. Yang et al., “Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications,” J. Mater. Chem., vol. 1, no. 16, pp. 2875–2885, 2013, doi: 10.1039/C3TC00790A.
- [21] M. F. Hossain, T. C. Paul, M. N. I. Khan, S. Islam, and P. Bala, “Magnetic and dielectric properties of ZnFe2O4/nanoclay composites synthesized via sol-gel autocombustion,” Mater. Chem. Phys., vol. 271, p. 124914, 2021, doi: 10.1016/j.matchemphys.2021.124914.
- [22] G. Fan, Z. Gu, L. Yang, and F. Li, “Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique,” Chem. Eng. J., vol. 155, no. 1, pp. 534–541, 2009, doi: 10.1016/j.cej.2009.08.008.
- [23] S. Zahi, “Nickel–zinc ferrite fabricated by sol–gel route and application in high-temperature superconducting magnetic energy storage for voltage sag solving,” Mater. Des., vol. 31, no. 4, pp. 1848–1853, 2010, doi: 10.1016/j.matdes.2009.11.004.
- [24] M. Sultan and R. Singh, “Magnetic and optical properties of rf-sputtered zinc ferrite thin films,” J. Appl. Phys., vol. 105, no. 7, p. 07A512, 2009, doi: 10.1063/1.3072381.
- [25] R. Schmidt, P. Mayrhofer, U. Schmid, and A. Bittner, “Impedance spectroscopy of Al/AlN/n-Si metal-insulator-semiconductor (MIS) structures,” J. Appl. Phys., vol. 125, no. 8, p. 84501, 2019, doi: 10.1063/1.5050181.
- [26] J. A. M. Alsmael, S. O. Tan, H. U. Tecimer, Ş. Altındal, and Y. A. Kalandaragh, “The Impact of Dopant on the Dielectric Properties of Metal-Semiconductor With ZnFe2O4 Doped Organic Polymer Nanocomposites Interlayer,” IEEE Trans. Nanotechnol., vol. 21, pp. 528–533, 2022, doi: 10.1109/TNANO.2022.3207900.
- [27] H. Kanbur, Ş. Altındal, and A. Tataroğlu, “The effect of interface states, excess capacitance and series resistance in the Al/SiO2/p-Si Schottky diodes,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1732–1738, 2005, doi: 10.1016/j.apsusc.2005.03.122.
- [28] H.-K. Lee, I. Jyothi, V. Janardhanam, K-H. Shim, H-J. Yun, S-N. Lee, H. Hong, J-C. Jeong, and C-J. Choi, “Effects of Ta-oxide interlayer on the Schottky barrier parameters of Ni/n-type Ge Schottky barrier diode,” Microelectron. Eng., vol. 163, pp. 26–31, 2016, doi: 10.1016/j.mee.2016.06.006.
- [29] Ş. Altındal, A. Tataroğlu, and İ. Dökme, “Density of interface states, excess capacitance and series resistance in the metal–insulator–semiconductor (MIS) solar cells,” Sol. Energy Mater. Sol. Cells, vol. 85, no. 3, pp. 345–358, 2005, doi: 10.1016/j.solmat.2004.05.004.
- [30] D. Ata, S. Altındal Yeriskin, A. Tataroğlu, and M. Balbasi, “Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure,” J. Phys. Chem. Solids, vol. 169, p. 110861, 2022, doi: 10.1016/j.jpcs.2022.110861.
- [31] M. Sharma, S. K. Tripathi, “Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes,” Mater. Sci. in Semicond. Process., vol. 41 pp. 155-161, 2016, doi: 10.1016/j.mssp.2015.07.028.
- [32] Z. Berktas, E. Orhan, M. Ulusoy, M. Yildiz, and S. Altındal, “Negative capacitance behavior at low frequencies of nitrogen-doped polyethylenimine-functionalized graphene quantum dots-based Structure,” ACS Appl. Electron. Mater., vol. 5, no. 3, pp. 1804–1811, 2023, doi: 10.1021/acsaelm.3c00011.
- [33] E. E. Tanrıkulu, S. Demirezen, Ş. Altındal, and İ. Uslu, “On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(% 7 Zn-PVA)/p-Si (MPS) structure,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 4, pp. 2890–2898, 2018, doi: 10.1007/s10854-017-8219-1.
- [34] S. Demirezen, E. E. Tanrıkulu, and Altındal, “The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors,” Indian J. Phys., vol.93, no. 6, pp. 739–747, 2019, doi: 10.1007/s12648-018-1355-5.
- [35] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. John Wiley & Sons, 2002.
- [36] H. Tecimer, H. Uslu, Z. A. Alahmed, F. Yakuphanoǧlu, and S. Altindal, “On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs),” Compos. Part B Eng., vol. 57, pp. 25–30, 2014, doi: 10.1016/j.compositesb.2013.09.040.
- [37] W. A. Hill and C. C. Coleman, “A single-frequency approximation for interface-state density determination,” Solid. State. Electron., vol. 23, no. 9, pp. 987–993, 1980, doi: 10.1016/0038-1101(80)90064-7.