Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Control of Single-Phase Double-Stage PV-MPPT System

Yıl 2024, Cilt: 12 Sayı: 4, 2050 - 2061, 23.10.2024
https://doi.org/10.29130/dubited.1484226

Öz

In the double-stage Photovoltaic-Maximum Power Point Tracking (PV-MPPT) systems, the performance of each stage and the MPPT algorithm may affect the system performance. This study gives the design and control of a single-phase double-stage PV-MPPT system with a cascade controller. For the DC-link voltage control, a classical PI controller is employed. However, double-line frequency harmonic emerges inherently in the DC-link voltage. This voltage harmonic causes a third harmonic in the injected grid current. Therefore, a proportional multi-resonant controller is used in the inner current loop controller to control the grid current and suppress the third harmonic. The designed system's steady-state and dynamic performance are tested under different PV power and sudden power changes. The simulation results show that the injected grid current is in phase with the grid voltage and has a low THD value. Also, the DC-link voltage is stable under even sudden power changes. The results prove the effectiveness of the designed system.

Kaynakça

  • [1] Elibol, E., & Dikmen, O. (2024). Long-term performance investigation of different solar panels in the West Black Sea Region. Clean Technologies and Environmental Policy, 26(3), 875-899.
  • [2] Oguz, C. B., Avci, E., & Ozturk, S. B. (2023). Analysis of PV power plant performance considering combination of different MPPT algorithms, shading patterns and connection types. Engineering Science and Technology, an International Journal, 48, 101559.
  • [3] Jäger-Waldau, A. (2023). Snapshot of photovoltaics− May 2023. EPJ Photovoltaics, 14, 23.
  • [4] Metayer, M., Breyer, C., & Fell, H. J. (2015, September). The projections for the future and quality in the past of the World Energy Outlook for solar PV and other renewable energy technologies. In 31st European Photovoltaic Solar Energy Conference and Exhibition (Vol. 5).
  • [5] Wolniak, R., & Skotnicka-Zasadzień, B. (2022). Development of photovoltaic energy in EU countries as an alternative to fossil fuels. Energies, 15(2), 662.
  • [6] Aamri, F. E., Maker, H., Sera, D., Spataru, S., Guerrero, J. M., Fakkar, A., & Mouhsen, A. (2023). Stability analysis for DC-link voltage controller design in single-stage single-phase grid-connected PV inverters. IEEE Journal of Photovoltaics.
  • [7] Li, H., & Wei, H. (2023, December). High Voltage Ride-Through Control Strategy for Two-Stage PV Grid-Connected Systems. In 2023 2nd Asia Power and Electrical Technology Conference (APET) (pp. 688-692). IEEE.
  • [8] Tak, N., Chattopadhyay, S. K., & Chakraborty, C. (2022). Single-sourced double-stage multilevel inverter for grid-connected solar PV systems. IEEE Open Journal of the Industrial Electronics Society, 3, 561-581.
  • [9] Wang, Y., & Yu, X. (2013, November). Comparison study of MPPT control strategies for double-stage PV grid-connected inverter. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 1561-1565). IEEE.
  • [10] Yang, Y., Zhou, K., & Blaabjerg, F. (2015). Current harmonics from single-phase grid-connected inverters—Examination and suppression. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 221-233.
  • [11] Ding, G., Gao, F., Tian, H., Ma, C., Chen, M., He, G., & Liu, Y. (2015). Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Transactions on Power Electronics, 31(6), 4182-4194.
  • [12] Jain, C., & Singh, B. (2016). An adjustable DC link voltage-based control of multifunctional grid interfaced solar PV system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 651-660.
  • [13] Zhou, X., Liu, Q., Ma, Y., & Xie, B. (2021). DC-link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control. IEEE Access, 9, 9884-9894.
  • [14] Townsend, C. D., Yu, Y., Konstantinou, G., & Agelidis, V. G. (2015). Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple. IEEE Transactions on Power Electronics, 31(8), 5574-5586.
  • [15] Kan, S., Ruan, X., & Huang, X. (2022). Compensation of second harmonic current based on bus voltage ripple limitation in single-phase photovoltaic grid-connected inverter. IEEE Transactions on Industrial Electronics, 70(7), 7525-7532.
  • [16] Dang, X., Pan, S., Pan, X., Gao, W., Ding, K., & Li, W. (2020, October). A modular three-phase photovoltaic inverter with elimination of phase unbalance and reduction of second harmonic voltage ripple. In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society (pp. 1186-1191). IEEE.
  • [17] Ismail, H. A., & Diab, A. A. Z. (2024). An efficient, fast, and robust algorithm for single diode model parameters estimation of photovoltaic solar cells. IET Renewable Power Generation.
  • [18] Kim, Y. J., & Kim, H. (2019). Optimal design of LCL filter in grid‐connected inverters. IET Power Electronics, 12(7), 1774-1782.
  • [19] Ma, G., Xie, C., Li, C., Zou, J., & Guerrero, J. M. (2023). Passivity-Based Design of Passive Damping for LCL-Type Grid-Connected Inverters to Achieve Full-Frequency Passive Output Admittance. IEEE Transactions on Power Electronics.
  • [20] Merai, M., Naouar, M. W., Slama-Belkhodja, I., & Monmasson, E. (2021). A systematic design methodology for DC-link voltage control of single phase grid-tied PV systems. Mathematics and Computers in Simulation, 183, 158-170.
  • [21] Avci, E., & Ucar, M. (2020). Proportional multi‐resonant‐based controller design method enhanced with a lead compensator for stand‐alone mode three‐level three‐phase four‐leg advanced T‐NPC inverter system. IET Power Electronics, 13(4), 863-872.
  • [22] Alemi, P., Bae, C. J., & Lee, D. C. (2015). Resonance suppression based on PR control for single-phase grid-connected inverters with LLCL filters. IEEE journal of emerging and selected topics in power electronics, 4(2), 459-467.
  • [23] Xie, Z., Chen, Y., Wu, W., Wang, Y., Gong, W., & Guerrero, J. M. (2021). Frequency coupling admittance modeling of quasi-PR controlled inverter and its stability comparative analysis under the weak grid. IEEE Access, 9, 94912-94922.

Tek-Fazlı Çift-Aşamalı FV-MGNT Sisteminin Tasarımı ve Kontrolü

Yıl 2024, Cilt: 12 Sayı: 4, 2050 - 2061, 23.10.2024
https://doi.org/10.29130/dubited.1484226

Öz

Çift aşamalı Fotovoltaik-Maksimum Güç Noktası Takip (FV-MGNT) sistemlerinde her aşamanın ve MGNT algoritmasının performansı sistem performansını etkileyebilmektedir. Bu çalışma kaskat kontrolcülü tek-fazlı çift-aşamalı FV-MGNT sisteminin tasarım ve kontrolünü sunmaktadır. Dc bara gerilimi için klasik bir PI kontrolcüsüne yer verilmiş. Fakat DC bara geriliminde şebeke frekansının iki katı büyüklüğünde bir gerilim harmoniği doğal olarak ortaya çıkar. Bu nedenle, şebeke akımını kontrol etmek ve üçüncü harmoniği bastırmak için iç akım döngüsünde oransal çoklu rezonans kontrolörü kullanılmıştır. Tasarlanan sistemin kararlı durum ve dinamik performansı, farklı FV gücü ve ani güç değişimleri altında test edilmiştir. Simülasyon sonuçları, şebeke basılan akımının şebeke gerilimi ile aynı fazda olduğunu ve düşük bir THD değerine sahip olduğunu göstermektedir. Ayrıca DC bara gerilimi ani güç değişimlerinde kararlı kalmıştır. Sonuçlar tasarlanan sistemin etkinliğini kanıtlamaktadır.

Kaynakça

  • [1] Elibol, E., & Dikmen, O. (2024). Long-term performance investigation of different solar panels in the West Black Sea Region. Clean Technologies and Environmental Policy, 26(3), 875-899.
  • [2] Oguz, C. B., Avci, E., & Ozturk, S. B. (2023). Analysis of PV power plant performance considering combination of different MPPT algorithms, shading patterns and connection types. Engineering Science and Technology, an International Journal, 48, 101559.
  • [3] Jäger-Waldau, A. (2023). Snapshot of photovoltaics− May 2023. EPJ Photovoltaics, 14, 23.
  • [4] Metayer, M., Breyer, C., & Fell, H. J. (2015, September). The projections for the future and quality in the past of the World Energy Outlook for solar PV and other renewable energy technologies. In 31st European Photovoltaic Solar Energy Conference and Exhibition (Vol. 5).
  • [5] Wolniak, R., & Skotnicka-Zasadzień, B. (2022). Development of photovoltaic energy in EU countries as an alternative to fossil fuels. Energies, 15(2), 662.
  • [6] Aamri, F. E., Maker, H., Sera, D., Spataru, S., Guerrero, J. M., Fakkar, A., & Mouhsen, A. (2023). Stability analysis for DC-link voltage controller design in single-stage single-phase grid-connected PV inverters. IEEE Journal of Photovoltaics.
  • [7] Li, H., & Wei, H. (2023, December). High Voltage Ride-Through Control Strategy for Two-Stage PV Grid-Connected Systems. In 2023 2nd Asia Power and Electrical Technology Conference (APET) (pp. 688-692). IEEE.
  • [8] Tak, N., Chattopadhyay, S. K., & Chakraborty, C. (2022). Single-sourced double-stage multilevel inverter for grid-connected solar PV systems. IEEE Open Journal of the Industrial Electronics Society, 3, 561-581.
  • [9] Wang, Y., & Yu, X. (2013, November). Comparison study of MPPT control strategies for double-stage PV grid-connected inverter. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 1561-1565). IEEE.
  • [10] Yang, Y., Zhou, K., & Blaabjerg, F. (2015). Current harmonics from single-phase grid-connected inverters—Examination and suppression. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 221-233.
  • [11] Ding, G., Gao, F., Tian, H., Ma, C., Chen, M., He, G., & Liu, Y. (2015). Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Transactions on Power Electronics, 31(6), 4182-4194.
  • [12] Jain, C., & Singh, B. (2016). An adjustable DC link voltage-based control of multifunctional grid interfaced solar PV system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 651-660.
  • [13] Zhou, X., Liu, Q., Ma, Y., & Xie, B. (2021). DC-link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control. IEEE Access, 9, 9884-9894.
  • [14] Townsend, C. D., Yu, Y., Konstantinou, G., & Agelidis, V. G. (2015). Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple. IEEE Transactions on Power Electronics, 31(8), 5574-5586.
  • [15] Kan, S., Ruan, X., & Huang, X. (2022). Compensation of second harmonic current based on bus voltage ripple limitation in single-phase photovoltaic grid-connected inverter. IEEE Transactions on Industrial Electronics, 70(7), 7525-7532.
  • [16] Dang, X., Pan, S., Pan, X., Gao, W., Ding, K., & Li, W. (2020, October). A modular three-phase photovoltaic inverter with elimination of phase unbalance and reduction of second harmonic voltage ripple. In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society (pp. 1186-1191). IEEE.
  • [17] Ismail, H. A., & Diab, A. A. Z. (2024). An efficient, fast, and robust algorithm for single diode model parameters estimation of photovoltaic solar cells. IET Renewable Power Generation.
  • [18] Kim, Y. J., & Kim, H. (2019). Optimal design of LCL filter in grid‐connected inverters. IET Power Electronics, 12(7), 1774-1782.
  • [19] Ma, G., Xie, C., Li, C., Zou, J., & Guerrero, J. M. (2023). Passivity-Based Design of Passive Damping for LCL-Type Grid-Connected Inverters to Achieve Full-Frequency Passive Output Admittance. IEEE Transactions on Power Electronics.
  • [20] Merai, M., Naouar, M. W., Slama-Belkhodja, I., & Monmasson, E. (2021). A systematic design methodology for DC-link voltage control of single phase grid-tied PV systems. Mathematics and Computers in Simulation, 183, 158-170.
  • [21] Avci, E., & Ucar, M. (2020). Proportional multi‐resonant‐based controller design method enhanced with a lead compensator for stand‐alone mode three‐level three‐phase four‐leg advanced T‐NPC inverter system. IET Power Electronics, 13(4), 863-872.
  • [22] Alemi, P., Bae, C. J., & Lee, D. C. (2015). Resonance suppression based on PR control for single-phase grid-connected inverters with LLCL filters. IEEE journal of emerging and selected topics in power electronics, 4(2), 459-467.
  • [23] Xie, Z., Chen, Y., Wu, W., Wang, Y., Gong, W., & Guerrero, J. M. (2021). Frequency coupling admittance modeling of quasi-PR controlled inverter and its stability comparative analysis under the weak grid. IEEE Access, 9, 94912-94922.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotovoltaik Güç Sistemleri, Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Emre Avcı 0000-0003-2086-1417

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 3 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Avcı, E. (2024). Design and Control of Single-Phase Double-Stage PV-MPPT System. Duzce University Journal of Science and Technology, 12(4), 2050-2061. https://doi.org/10.29130/dubited.1484226
AMA Avcı E. Design and Control of Single-Phase Double-Stage PV-MPPT System. DÜBİTED. Ekim 2024;12(4):2050-2061. doi:10.29130/dubited.1484226
Chicago Avcı, Emre. “Design and Control of Single-Phase Double-Stage PV-MPPT System”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2050-61. https://doi.org/10.29130/dubited.1484226.
EndNote Avcı E (01 Ekim 2024) Design and Control of Single-Phase Double-Stage PV-MPPT System. Duzce University Journal of Science and Technology 12 4 2050–2061.
IEEE E. Avcı, “Design and Control of Single-Phase Double-Stage PV-MPPT System”, DÜBİTED, c. 12, sy. 4, ss. 2050–2061, 2024, doi: 10.29130/dubited.1484226.
ISNAD Avcı, Emre. “Design and Control of Single-Phase Double-Stage PV-MPPT System”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2050-2061. https://doi.org/10.29130/dubited.1484226.
JAMA Avcı E. Design and Control of Single-Phase Double-Stage PV-MPPT System. DÜBİTED. 2024;12:2050–2061.
MLA Avcı, Emre. “Design and Control of Single-Phase Double-Stage PV-MPPT System”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2050-61, doi:10.29130/dubited.1484226.
Vancouver Avcı E. Design and Control of Single-Phase Double-Stage PV-MPPT System. DÜBİTED. 2024;12(4):2050-61.