Araştırma Makalesi
BibTex RIS Kaynak Göster

Floroanilin ve Floroanizol İzomerlerin Moleküler Özelliklerinin Teorik İncelenmesi

Yıl 2025, Cilt: 13 Sayı: 1, 64 - 94, 30.01.2025
https://doi.org/10.29130/dubited.1396459

Öz

Bu çalışmada, floranilin ve fluoroanisol izomerlerinin moleküler özelliklerini çeşitli teorik yöntemlerle analiz edilmesi amaçlamaktadır. Bu yöntemler arasında moleküler yapıların optimizasyonu, konformasyon analizi ve doğrusal olmayan optik (NLO) özelliklerin, sınır moleküler orbital (HOMO-1, HOMO/SOMO, LUMO, LUMO+1) enerjilerinin, kimyasal reaktivite tanımlayıcılarının (iyonlaşma potansiyelleri - dikey ve adyabatik, elektron afinitesi, kimyasal sertlik, yumuşaklık ve elektronegatiflik), moleküler elektrostatik potansiyel (MEP), doğal bağ orbital (NBO) ve UV-Vis spektrumlarının hesaplanması bulunmaktadır. Bu hesaplamaları gerçekleştirmek için, yoğunluk fonksiyonel teorisi (YFT) yöntemi B3LYP fonksiyonu ve 6-311++G (d, p) baz seti kullanılmıştır. Ayrıca, araştırmada, moleküllerin dikey ve adyabatik iyonizasyon enerji parametrelerini tek yüklü katyon radikalleri oluşturarak incelemektedir. Bu çalışmanın sonuçları, floroanilin ve floroanizol izomerlerinin moleküler özelliklerine dair değerli bilgiler sağlamaktadır ve bu bilgiler, ilaç ve tarım kimyasalları üretiminde faydalı olabilir.

Proje Numarası

118C476 and 122F301

Kaynakça

  • [1] I. M. Rietjens and J. Vervoort, "Microsomal metabolism of fluoroanilines," Xenobiotica, vol. 19, no. 11, pp. 1297-1305, 1989.
  • [2] K. Haruna, A. A. Alenaizan, and A. A. Al-Saadi, "Density functional theory study of the substituent effect on the structure, conformation and vibrational spectra in halosubstituted anilines," RSC Advances, vol. 6, no. 72, pp. 67794-67804, 2016.
  • [3] M. Shashidhar, K. S. Rao, and E. Jayadevappa, "Vibrational spectra of ortho-, meta and para-fluoroanilines," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 26, no. 12, pp. 2373-2377, 1970.
  • [4] R. Kydd and P. Krueger, "The far‐infrared vapor phase spectra of some halosubstituted anilines," The Journal of Chemical Physics, vol. 69, no. 2, pp. 827-832, 1978.
  • [5] R. D. Gordon, D. Clark, J. Crawley, and R. Mitchell, "Excited state amino inversion potentials in aniline derivatives: Fluoroanilines and aminopyridines," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 40, no. 7, pp. 657-668, 1984.
  • [6] M. Becucci, E. Castellucci, I. Lopez-Tocon, G. Pietraperzia, P. Salvi, and W. Caminati, "Inversion Motion and S1 Equilibrium Geometry of 4-Fluoroaniline: Molecular Beam High-Resolution Spectroscopy and ab Initio Calculations," The Journal of Physical Chemistry A, vol. 103, no. 45, pp. 8946-8951, 1999.
  • [7] M. H. Palmer, W. Moyes, M. Speirs, and J. N. A. Ridyard, "The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl-and fluoro-derivatives, and the dihydroxybenzenes," Journal of Molecular Structure, vol. 52, pp. 293-307, 1979.
  • [8] C. H. Sin, R. Tembreull, and D. M. Lubman, "Resonant two-photon ionization spectroscopy in supersonic beams for discrimination of disubstituted benzenes in mass spectrometry," Analytical Chemistry, vol. 56, no. 14, pp. 2776-2781, 1984.
  • [9] R. Tembreull, T. M. Dunn, and D. M. Lubman, "Excited state spectroscopy of para di-substituted benzenes in a supersonic beam using resonant two photon ionization," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 42, no. 8, pp. 899-906, 1986.
  • [10] W. Tzeng and J. Lin, "Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy," The Journal of Physical Chemistry A, vol. 103, no. 43, pp. 8612-8619, 1999.
  • [11] J. L. Lin and W. B. Tzeng, "Ionization energy of o-fluoroaniline and vibrational levels of o-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy," Physical Chemistry Chemical Physics, vol. 2, no. 17, pp. 3759-3763, 2000.
  • [12] J. L. Lin, K. C. Lin, and W. B. Tzeng, "Species-selected mass-analyzed threshold ionization spectra of m-fluoroaniline cation," (in English), Applied Spectroscopy, vol. 55, no. 2, pp. 120-124, Feb 2001.
  • [13] S. P. Mirza, N. P. Raju, and M. Vairamani, "Estimation of the proton affinity values of fifteen matrix-assisted laser desorption/ionization matrices under electrospray ionization conditions using the kinetic method," Journal of the American Society for Mass Spectrometry, vol. 15, no. 3, pp. 431-435, 2004.
  • [14] H. Borsdorf, E. Nazarov, and R. Miller, "Time-of-flight ion mobility spectrometry and differential mobility spectrometry: A comparative study of their efficiency in the analysis of halogenated compounds," Talanta, vol. 71, no. 4, pp. 1804-1812, 2007.
  • [15] G. Chałasiński and M. M. Szczȩśniak, "State of the art and challenges of the ab initio theory of intermolecular interactions," Chemical reviews, vol. 100, no. 11, pp. 4227-4252, 2000.
  • [16] A. Abdou, H. M. Mostafa, and A.-M. M. Abdel-Mawgoud, "Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular docking analysis," Inorganica Chimica Acta, vol. 539, p. 121043, 2022.
  • [17] S. Bahçeli, E. K. Sarıkaya, and Ö. Dereli, "5‐Bromosalicylaldehyde: Theoretical, Experimental and Spectroscopic (FT‐IR, Raman, H1 and C13‐NMR, UV‐Vis) Studies and Their Photovoltaic Parameters," ChemistrySelect, vol. 9, no. 12, p. e202400054, 2024.
  • [18] E.-W. Huang et al., "Machine-learning and high-throughput studies for high-entropy materials," Materials Science and Engineering: R: Reports, vol. 147, p. 100645, 2022.
  • [19] M. A. Baldwin, A. G. Loudon, A. Maccoll, and K. S. Webb, "The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds," Journal of Mass Spectrometry, vol. 11, no. 11, pp. 1181-1193, 1976.
  • [20] G. G. Furin, A. S. Sultanov, and I. I. Furlei, "Photoelectronic spectra of fluorine-containing aromatic amines," (in English), Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, vol. 36, no. 3, pp. 530-534, Mar 1987.
  • [21] M. H. Palmer, W. Moyes, and M. Spiers, "The electronic structure of substituted benzenes: ab initio calculations and photoelectron spectra for benzonitrile, the tolunitriles, fluorobenzonitriles, dicyanobenzenes and ethynylbenzene," (in English), Journal of Molecular Structure, vol. 62, no. Feb, pp. 165-187, 1980.
  • [22] P. Farrell and J. Newton, "Ionization potentials of primary aromatic amines and aza-hydrocarbons," Tetrahedron Letters, vol. 7, no. 45, pp. 5517-5523, 1966.
  • [23] I. C. de Silva, R. M. de Silva, and K. N. De Silva, "Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations," vol. 728, no. 1-3, pp. 141-145, 2005.
  • [24] H. Seip and R. Seip, "On the Structure of Gaseous Anisole," Acta Chem. Scand, vol. 27, pp. 4024-4027, 1973.
  • [25] O. Desyatnyk, L. Pszczółkowski, S. Thorwirth, T. Krygowski, and Z. Kisiel, "The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde," Physical Chemistry Chemical Physics, vol. 7, no. 8, pp. 1708-1715, 2005.
  • [26] C. Eisenhardt, G. Pietraperzia, and M. Becucci, "The high resolution spectrum of the S 1← S 0 transition of anisole," Physical Chemistry Chemical Physics, vol. 3, no. 8, pp. 1407-1410, 2001.
  • [27] M. Bossa, S. Morpurgo, and S. Stranges, "The use of ab initio and DFT calculations in the interpretation of ultraviolet photoelectron spectra: the rotational isomerism of anisole and thioanisole as a case study," Journal of Molecular Structure: THEOCHEM, vol. 618, no. 1, pp. 155-164, 2002.
  • [28] M. Pradhan, C. Li, J. L. Lin, and W. B. Tzeng, "Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH 3 substitution effect," Chemical physics letters, vol. 407, no. 1, pp. 100-104, 2005.
  • [29] I. B. Khalifa et al., "About some properties of electro-synthesized short Oligo (Para-Fluoro-Anisole)(OPFA): A combined experimental and theoretical study," Journal of Molecular Structure, vol. 997, no. 1, pp. 37-45, 2011.
  • [30] D. Xiao et al., "Vibrational spectrum of p-fluoroanisole in the first excited state (S 1) and ab initio calculations," Journal of Molecular Structure, vol. 882, no. 1, pp. 56-62, 2008.
  • [31] K. S. Shiung, D. Yu, H. C. Huang, and W. B. Tzeng, "Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy," Journal of Molecular Spectroscopy, vol. 274, pp. 43-47, 2012.
  • [32] B. Bogdanov, D. van Duijn, S. Ingemann, and S. Hammerum, "Protonation of fluorophenols and fluoroanisoles in the gas phase: experiment and theory," Physical Chemistry Chemical Physics, vol. 4, no. 13, pp. 2904-2910, 2002.
  • [33] P. Brown, "Kinetic studies in mass spectrometry—VIII: Competing [M CH3] and [M CH2O] reactions in substituted anisoles. Approximate activation energies from ioniziation and appearance potentals," Organic Mass Spectrometry, vol. 4, no. S1, pp. 519-532, 1970.
  • [34] M. A. R. da Silva and A. I. L. Ferreira, "Experimental and computational study on the molecular energetics of the three monofluoroanisole isomers," The Journal of Chemical Thermodynamics, vol. 41, no. 3, pp. 361-366, 2009.
  • [35] N. I. Giricheva, G. V. Girichev, J. S. Levina, and H. Oberhammer, "Molecular structures and conformations of 4-fluoranisole and 3, 4-difluoranisole: gas electron diffraction and quantum chemical calculations," Journal of molecular structure, vol. 703, no. 1, pp. 55-62, 2004.
  • [36] V. P. Novikov, L. V. Vilkov, and H. Oberhammer, "Conformational properties of 2-fluoroanisole in the gas phase," The Journal of Physical Chemistry A, vol. 107, no. 6, pp. 908-913, 2003.
  • [37] T. Isozaki, K. Sakeda, T. Suzuki, and T. Ichimura, "Fluorescence spectroscopy of jet-cooled o-fluoroanisole: Mixing through Duschinsky effect and Fermi resonance," The Journal of chemical physics, vol. 132, no. 21, p. 214308, 2010.
  • [38] S. G. Lias and P. Ausloos, "Ionization energies of organic compounds by equilibrium measurements," Journal of the American Chemical Society, vol. 100, no. 19, pp. 6027-6034, 1978.
  • [39] K. Watanabe, T. Nakayama, and J. Mottl, "Ionization potentials of some molecules," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 2, no. 4, pp. 369-382, 1962.
  • [40] A. Oikawa, H. Abe, N. Mikami, and M. Ito, "Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes," Chemical physics letters, vol. 116, no. 1, pp. 50-54, 1985.
  • [41] Y. Shao et al., "Spartan’08, Wavefunction, Inc. Irvine, CA," vol. 8, pp. 3172-3191, 2006.
  • [42] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, no. 6, pp. 3098-3100, 09/01/ 1988.
  • [43] C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical review B, vol. 37, no. 2, p. 785, 1988.
  • [44] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, "Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr," Chemical Physics Letters, vol. 157, no. 3, pp. 200-206, 1989.
  • [45] M. Frisch et al., "Gaussian 09, revision D. 01," ed: Gaussian, Inc., Wallingford CT, 2009.
  • [46] V. Balachandran, G. Santhi, V. Karpagam, and A. Lakshmi, "DFT computation and spectroscopic analysis of N-(p-methoxybenzylidene) aniline, a potentially useful NLO material," Journal of Molecular Structure, vol. 1047, pp. 249-261, 2013.
  • [47] E. Enbaraj et al., "Novel Synthesis of NE, N′ E-4, 4′-sulfonylbis (N-(substituted-dichlorobenzylidene) anilines derivative their application biological and DFT studies," in Journal of Physics: Conference Series, 2021, vol. 1724, no. 1, p. 012046: IOP Publishing.
  • [48] N. Kang, Z.-X. Zhao, and H.-X. Zhang, "Mechanistic Study on CpRh (III)-Catalyzed [3+ 2] Annulation of Aniline Derivatives with Vinylsilanes: A DFT Study," The Journal of Organic Chemistry, vol. 88, no. 11, pp. 7320-7327, 2023.
  • [49] H. T. Le, R. Flammang, M. Barbieux-Flammang, P. Gerbaux, and M. T. Nguyen, "Ionized aniline and its distonic radical cation isomers," International Journal of Mass Spectrometry, vol. 217, no. 1-3, pp. 45-54, 2002.
  • [50] A. R. Kumar et al., "Comparison of spectroscopic, structural, and molecular docking studies of 5-nitro-2-fluoroaniline and 2-nitro-5-fluoroaniline: An attempt on fluoroaniline isomers," Journal of Fluorine Chemistry, vol. 270, p. 110167, 2023.
  • [51] N. M. O'boyle, A. L. Tenderholt, and K. M. Langner, "Cclib: a library for package‐independent computational chemistry algorithms," Journal of computational chemistry, vol. 29, no. 5, pp. 839-845, 2008.
  • [52] D. Chopra, V. Thiruvenkatam, T. N. G. J. C. g. Row, and design, "In situ cryo-crystallization of fluorinated amines: A comparative study of cooperative intermolecular interactions involving ordered and disordered fluorine," vol. 6, no. 4, pp. 843-845, 2006.
  • [53] T. Koopmans, "Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms," vol. 1, no. 1-6, pp. 104-113, 1934.
  • [54] L. Pauling, The Nature of the Chemical Bond. Cornell university press Ithaca, NY, 1960.
  • [55] R. G. Parr, L. v. Szentpaly, and S. Liu, "Electrophilicity index," vol. 121, no. 9, pp. 1922-1924, 1999.
  • [56] P. S. Liyanage, R. M. de Silva, and K. N. de Silva, "Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations," vol. 639, no. 1-3, pp. 195-201, 2003.
  • [57] P. N. Prasad and D. J. Williams, Introduction to nonlinear optical effects in molecules and polymers. Wiley New York, 1991.
  • [58] Y. Ekincioğlu, H. Ş. Kılıç, and Ö. Dereli, "DFT Study of Conformational Analysis, Molecular Structure and Properties of para-, meta-and ortho 4-Methoxyphenyl Piperazine Isomers," pp. 1-11, 2021.
  • [59] A. Zawadzka et al., "Optical and structural characterization of thin films containing metallophthalocyanine chlorides," Dyes and Pigments, vol. 112, pp. 116-126, 2015.
  • [60] I. Alkorta and J. J. Perez, "Molecular polarization potential maps of the nucleic acid bases," vol. 57, no. 1, pp. 123-135, 1996.
  • [61] B. Lengsfield and D. R. Yarkony, "Nonadiabatic interactions between potential energy surfaces: Theory and applications," vol. 82, no. 2, pp. 1-71, 1992.
  • [62] P. Politzer and J. S. Murray, "The fundamental nature and role of the electrostatic potential in atoms and molecules," vol. 108, no. 3, pp. 134-142, 2002.
  • [63] F. Weinhold, C. Landis, and E. Glendening, "What is NBO analysis and how is it useful?," vol. 35, no. 3, pp. 399-440, 2016.
  • [64] Y. Ekincioğlu, H. Ş. Kılıç, and Ö. Dereli, "Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl) piperazine (mCPP) Molecule," vol. 4, no. 2, pp. 88-97.
  • [65] K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, "Second-order perturbation theory with a CASSCF reference function," vol. 94, no. 14, pp. 5483-5488, 1990.
  • [66] J. A. Agwupuye, H. Louis, T. O. Unimuke, P. David, E. I. Ubana, and Y. L. Moshood, "Electronic structure investigation of the stability, reactivity, NBO analysis, thermodynamics, and the nature of the interactions in methyl-substituted imidazolium-based ionic liquids," vol. 337, p. 116458, 2021.
  • [67] M. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano, "Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism," vol. 41, no. 2, pp. 267-275, 2003.
  • [68] A. Kepceoglu, Y. Gundogdu, O. Dereli, and H. S. Kilic, "Molecular Structure and TD-DFT Study of the Xylene Isomers," Gazi University Journal of Science, vol. 32, no. 1, pp. 300-308, 2019.
  • [69] A. Kepceoğlu, N. Köklü, Y. Gündoğdu, Ö. Dereli, and H. Kilic, "Analysis of the xylenol isomers by femtosecond laser time of flight mass spectrometry," Canadian Journal of Physics, vol. 96, no. 7, pp. 711-715, 2018.

Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers

Yıl 2025, Cilt: 13 Sayı: 1, 64 - 94, 30.01.2025
https://doi.org/10.29130/dubited.1396459

Öz

This research paper aims to analyse the molecular properties of fluoroaniline and fluoroanisole isomers through a range of theoretical methods. These methods include optimization of molecular structures, conformational analysis, and calculation of nonlinear optics (NLO) properties, frontier molecular orbital (HOMO-1, HOMO/SOMO, LUMO, LUMO+1) energies, chemical reactivity descriptors (ionization potentials - vertical and adiabatic, electron affinity, chemical hardness, softness, and electronegativity), molecular electrostatic potential (MEP), natural bonding orbital (NBO), and UV-Vis spectra. To achieve this, the density functional theory method with B3LYP functional and 6-311++G (d, p) basis set were used for the calculations. Additionally, the research examines the vertical and adiabatic ionization energy parameters of the molecules by constructing singly charged cation radicals. The outcome of this study provides valuable insights into the molecular properties of fluoroaniline and fluoroanisole isomers, which can be useful in the production of pharmaceuticals and agrochemicals.

Etik Beyan

During the writing process of our study, the information of which is given above, international scientific, ethical and citation rules have been followed, no falsification has been made on the data collected, and Sakarya University Journal of Science and its editorial board have no responsibility for any ethical violations that may be encountered. I undertake that I have full responsibility and that this study has not been evaluated in any academic environment other than Sakarya University Journal of Science.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118C476 and 122F301

Teşekkür

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 118C476 and Grant No. 122F301. However, the entire responsibility of the publication belongs to the authors of the publication. The financial support received from TÜBİTAK does not mean that the content of the publication is approved in a scientific sense by TÜBİTAK.

Kaynakça

  • [1] I. M. Rietjens and J. Vervoort, "Microsomal metabolism of fluoroanilines," Xenobiotica, vol. 19, no. 11, pp. 1297-1305, 1989.
  • [2] K. Haruna, A. A. Alenaizan, and A. A. Al-Saadi, "Density functional theory study of the substituent effect on the structure, conformation and vibrational spectra in halosubstituted anilines," RSC Advances, vol. 6, no. 72, pp. 67794-67804, 2016.
  • [3] M. Shashidhar, K. S. Rao, and E. Jayadevappa, "Vibrational spectra of ortho-, meta and para-fluoroanilines," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 26, no. 12, pp. 2373-2377, 1970.
  • [4] R. Kydd and P. Krueger, "The far‐infrared vapor phase spectra of some halosubstituted anilines," The Journal of Chemical Physics, vol. 69, no. 2, pp. 827-832, 1978.
  • [5] R. D. Gordon, D. Clark, J. Crawley, and R. Mitchell, "Excited state amino inversion potentials in aniline derivatives: Fluoroanilines and aminopyridines," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 40, no. 7, pp. 657-668, 1984.
  • [6] M. Becucci, E. Castellucci, I. Lopez-Tocon, G. Pietraperzia, P. Salvi, and W. Caminati, "Inversion Motion and S1 Equilibrium Geometry of 4-Fluoroaniline: Molecular Beam High-Resolution Spectroscopy and ab Initio Calculations," The Journal of Physical Chemistry A, vol. 103, no. 45, pp. 8946-8951, 1999.
  • [7] M. H. Palmer, W. Moyes, M. Speirs, and J. N. A. Ridyard, "The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl-and fluoro-derivatives, and the dihydroxybenzenes," Journal of Molecular Structure, vol. 52, pp. 293-307, 1979.
  • [8] C. H. Sin, R. Tembreull, and D. M. Lubman, "Resonant two-photon ionization spectroscopy in supersonic beams for discrimination of disubstituted benzenes in mass spectrometry," Analytical Chemistry, vol. 56, no. 14, pp. 2776-2781, 1984.
  • [9] R. Tembreull, T. M. Dunn, and D. M. Lubman, "Excited state spectroscopy of para di-substituted benzenes in a supersonic beam using resonant two photon ionization," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 42, no. 8, pp. 899-906, 1986.
  • [10] W. Tzeng and J. Lin, "Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy," The Journal of Physical Chemistry A, vol. 103, no. 43, pp. 8612-8619, 1999.
  • [11] J. L. Lin and W. B. Tzeng, "Ionization energy of o-fluoroaniline and vibrational levels of o-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy," Physical Chemistry Chemical Physics, vol. 2, no. 17, pp. 3759-3763, 2000.
  • [12] J. L. Lin, K. C. Lin, and W. B. Tzeng, "Species-selected mass-analyzed threshold ionization spectra of m-fluoroaniline cation," (in English), Applied Spectroscopy, vol. 55, no. 2, pp. 120-124, Feb 2001.
  • [13] S. P. Mirza, N. P. Raju, and M. Vairamani, "Estimation of the proton affinity values of fifteen matrix-assisted laser desorption/ionization matrices under electrospray ionization conditions using the kinetic method," Journal of the American Society for Mass Spectrometry, vol. 15, no. 3, pp. 431-435, 2004.
  • [14] H. Borsdorf, E. Nazarov, and R. Miller, "Time-of-flight ion mobility spectrometry and differential mobility spectrometry: A comparative study of their efficiency in the analysis of halogenated compounds," Talanta, vol. 71, no. 4, pp. 1804-1812, 2007.
  • [15] G. Chałasiński and M. M. Szczȩśniak, "State of the art and challenges of the ab initio theory of intermolecular interactions," Chemical reviews, vol. 100, no. 11, pp. 4227-4252, 2000.
  • [16] A. Abdou, H. M. Mostafa, and A.-M. M. Abdel-Mawgoud, "Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular docking analysis," Inorganica Chimica Acta, vol. 539, p. 121043, 2022.
  • [17] S. Bahçeli, E. K. Sarıkaya, and Ö. Dereli, "5‐Bromosalicylaldehyde: Theoretical, Experimental and Spectroscopic (FT‐IR, Raman, H1 and C13‐NMR, UV‐Vis) Studies and Their Photovoltaic Parameters," ChemistrySelect, vol. 9, no. 12, p. e202400054, 2024.
  • [18] E.-W. Huang et al., "Machine-learning and high-throughput studies for high-entropy materials," Materials Science and Engineering: R: Reports, vol. 147, p. 100645, 2022.
  • [19] M. A. Baldwin, A. G. Loudon, A. Maccoll, and K. S. Webb, "The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds," Journal of Mass Spectrometry, vol. 11, no. 11, pp. 1181-1193, 1976.
  • [20] G. G. Furin, A. S. Sultanov, and I. I. Furlei, "Photoelectronic spectra of fluorine-containing aromatic amines," (in English), Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, vol. 36, no. 3, pp. 530-534, Mar 1987.
  • [21] M. H. Palmer, W. Moyes, and M. Spiers, "The electronic structure of substituted benzenes: ab initio calculations and photoelectron spectra for benzonitrile, the tolunitriles, fluorobenzonitriles, dicyanobenzenes and ethynylbenzene," (in English), Journal of Molecular Structure, vol. 62, no. Feb, pp. 165-187, 1980.
  • [22] P. Farrell and J. Newton, "Ionization potentials of primary aromatic amines and aza-hydrocarbons," Tetrahedron Letters, vol. 7, no. 45, pp. 5517-5523, 1966.
  • [23] I. C. de Silva, R. M. de Silva, and K. N. De Silva, "Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations," vol. 728, no. 1-3, pp. 141-145, 2005.
  • [24] H. Seip and R. Seip, "On the Structure of Gaseous Anisole," Acta Chem. Scand, vol. 27, pp. 4024-4027, 1973.
  • [25] O. Desyatnyk, L. Pszczółkowski, S. Thorwirth, T. Krygowski, and Z. Kisiel, "The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde," Physical Chemistry Chemical Physics, vol. 7, no. 8, pp. 1708-1715, 2005.
  • [26] C. Eisenhardt, G. Pietraperzia, and M. Becucci, "The high resolution spectrum of the S 1← S 0 transition of anisole," Physical Chemistry Chemical Physics, vol. 3, no. 8, pp. 1407-1410, 2001.
  • [27] M. Bossa, S. Morpurgo, and S. Stranges, "The use of ab initio and DFT calculations in the interpretation of ultraviolet photoelectron spectra: the rotational isomerism of anisole and thioanisole as a case study," Journal of Molecular Structure: THEOCHEM, vol. 618, no. 1, pp. 155-164, 2002.
  • [28] M. Pradhan, C. Li, J. L. Lin, and W. B. Tzeng, "Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH 3 substitution effect," Chemical physics letters, vol. 407, no. 1, pp. 100-104, 2005.
  • [29] I. B. Khalifa et al., "About some properties of electro-synthesized short Oligo (Para-Fluoro-Anisole)(OPFA): A combined experimental and theoretical study," Journal of Molecular Structure, vol. 997, no. 1, pp. 37-45, 2011.
  • [30] D. Xiao et al., "Vibrational spectrum of p-fluoroanisole in the first excited state (S 1) and ab initio calculations," Journal of Molecular Structure, vol. 882, no. 1, pp. 56-62, 2008.
  • [31] K. S. Shiung, D. Yu, H. C. Huang, and W. B. Tzeng, "Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy," Journal of Molecular Spectroscopy, vol. 274, pp. 43-47, 2012.
  • [32] B. Bogdanov, D. van Duijn, S. Ingemann, and S. Hammerum, "Protonation of fluorophenols and fluoroanisoles in the gas phase: experiment and theory," Physical Chemistry Chemical Physics, vol. 4, no. 13, pp. 2904-2910, 2002.
  • [33] P. Brown, "Kinetic studies in mass spectrometry—VIII: Competing [M CH3] and [M CH2O] reactions in substituted anisoles. Approximate activation energies from ioniziation and appearance potentals," Organic Mass Spectrometry, vol. 4, no. S1, pp. 519-532, 1970.
  • [34] M. A. R. da Silva and A. I. L. Ferreira, "Experimental and computational study on the molecular energetics of the three monofluoroanisole isomers," The Journal of Chemical Thermodynamics, vol. 41, no. 3, pp. 361-366, 2009.
  • [35] N. I. Giricheva, G. V. Girichev, J. S. Levina, and H. Oberhammer, "Molecular structures and conformations of 4-fluoranisole and 3, 4-difluoranisole: gas electron diffraction and quantum chemical calculations," Journal of molecular structure, vol. 703, no. 1, pp. 55-62, 2004.
  • [36] V. P. Novikov, L. V. Vilkov, and H. Oberhammer, "Conformational properties of 2-fluoroanisole in the gas phase," The Journal of Physical Chemistry A, vol. 107, no. 6, pp. 908-913, 2003.
  • [37] T. Isozaki, K. Sakeda, T. Suzuki, and T. Ichimura, "Fluorescence spectroscopy of jet-cooled o-fluoroanisole: Mixing through Duschinsky effect and Fermi resonance," The Journal of chemical physics, vol. 132, no. 21, p. 214308, 2010.
  • [38] S. G. Lias and P. Ausloos, "Ionization energies of organic compounds by equilibrium measurements," Journal of the American Chemical Society, vol. 100, no. 19, pp. 6027-6034, 1978.
  • [39] K. Watanabe, T. Nakayama, and J. Mottl, "Ionization potentials of some molecules," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 2, no. 4, pp. 369-382, 1962.
  • [40] A. Oikawa, H. Abe, N. Mikami, and M. Ito, "Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes," Chemical physics letters, vol. 116, no. 1, pp. 50-54, 1985.
  • [41] Y. Shao et al., "Spartan’08, Wavefunction, Inc. Irvine, CA," vol. 8, pp. 3172-3191, 2006.
  • [42] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, no. 6, pp. 3098-3100, 09/01/ 1988.
  • [43] C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical review B, vol. 37, no. 2, p. 785, 1988.
  • [44] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, "Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr," Chemical Physics Letters, vol. 157, no. 3, pp. 200-206, 1989.
  • [45] M. Frisch et al., "Gaussian 09, revision D. 01," ed: Gaussian, Inc., Wallingford CT, 2009.
  • [46] V. Balachandran, G. Santhi, V. Karpagam, and A. Lakshmi, "DFT computation and spectroscopic analysis of N-(p-methoxybenzylidene) aniline, a potentially useful NLO material," Journal of Molecular Structure, vol. 1047, pp. 249-261, 2013.
  • [47] E. Enbaraj et al., "Novel Synthesis of NE, N′ E-4, 4′-sulfonylbis (N-(substituted-dichlorobenzylidene) anilines derivative their application biological and DFT studies," in Journal of Physics: Conference Series, 2021, vol. 1724, no. 1, p. 012046: IOP Publishing.
  • [48] N. Kang, Z.-X. Zhao, and H.-X. Zhang, "Mechanistic Study on CpRh (III)-Catalyzed [3+ 2] Annulation of Aniline Derivatives with Vinylsilanes: A DFT Study," The Journal of Organic Chemistry, vol. 88, no. 11, pp. 7320-7327, 2023.
  • [49] H. T. Le, R. Flammang, M. Barbieux-Flammang, P. Gerbaux, and M. T. Nguyen, "Ionized aniline and its distonic radical cation isomers," International Journal of Mass Spectrometry, vol. 217, no. 1-3, pp. 45-54, 2002.
  • [50] A. R. Kumar et al., "Comparison of spectroscopic, structural, and molecular docking studies of 5-nitro-2-fluoroaniline and 2-nitro-5-fluoroaniline: An attempt on fluoroaniline isomers," Journal of Fluorine Chemistry, vol. 270, p. 110167, 2023.
  • [51] N. M. O'boyle, A. L. Tenderholt, and K. M. Langner, "Cclib: a library for package‐independent computational chemistry algorithms," Journal of computational chemistry, vol. 29, no. 5, pp. 839-845, 2008.
  • [52] D. Chopra, V. Thiruvenkatam, T. N. G. J. C. g. Row, and design, "In situ cryo-crystallization of fluorinated amines: A comparative study of cooperative intermolecular interactions involving ordered and disordered fluorine," vol. 6, no. 4, pp. 843-845, 2006.
  • [53] T. Koopmans, "Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms," vol. 1, no. 1-6, pp. 104-113, 1934.
  • [54] L. Pauling, The Nature of the Chemical Bond. Cornell university press Ithaca, NY, 1960.
  • [55] R. G. Parr, L. v. Szentpaly, and S. Liu, "Electrophilicity index," vol. 121, no. 9, pp. 1922-1924, 1999.
  • [56] P. S. Liyanage, R. M. de Silva, and K. N. de Silva, "Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations," vol. 639, no. 1-3, pp. 195-201, 2003.
  • [57] P. N. Prasad and D. J. Williams, Introduction to nonlinear optical effects in molecules and polymers. Wiley New York, 1991.
  • [58] Y. Ekincioğlu, H. Ş. Kılıç, and Ö. Dereli, "DFT Study of Conformational Analysis, Molecular Structure and Properties of para-, meta-and ortho 4-Methoxyphenyl Piperazine Isomers," pp. 1-11, 2021.
  • [59] A. Zawadzka et al., "Optical and structural characterization of thin films containing metallophthalocyanine chlorides," Dyes and Pigments, vol. 112, pp. 116-126, 2015.
  • [60] I. Alkorta and J. J. Perez, "Molecular polarization potential maps of the nucleic acid bases," vol. 57, no. 1, pp. 123-135, 1996.
  • [61] B. Lengsfield and D. R. Yarkony, "Nonadiabatic interactions between potential energy surfaces: Theory and applications," vol. 82, no. 2, pp. 1-71, 1992.
  • [62] P. Politzer and J. S. Murray, "The fundamental nature and role of the electrostatic potential in atoms and molecules," vol. 108, no. 3, pp. 134-142, 2002.
  • [63] F. Weinhold, C. Landis, and E. Glendening, "What is NBO analysis and how is it useful?," vol. 35, no. 3, pp. 399-440, 2016.
  • [64] Y. Ekincioğlu, H. Ş. Kılıç, and Ö. Dereli, "Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl) piperazine (mCPP) Molecule," vol. 4, no. 2, pp. 88-97.
  • [65] K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, "Second-order perturbation theory with a CASSCF reference function," vol. 94, no. 14, pp. 5483-5488, 1990.
  • [66] J. A. Agwupuye, H. Louis, T. O. Unimuke, P. David, E. I. Ubana, and Y. L. Moshood, "Electronic structure investigation of the stability, reactivity, NBO analysis, thermodynamics, and the nature of the interactions in methyl-substituted imidazolium-based ionic liquids," vol. 337, p. 116458, 2021.
  • [67] M. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano, "Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism," vol. 41, no. 2, pp. 267-275, 2003.
  • [68] A. Kepceoglu, Y. Gundogdu, O. Dereli, and H. S. Kilic, "Molecular Structure and TD-DFT Study of the Xylene Isomers," Gazi University Journal of Science, vol. 32, no. 1, pp. 300-308, 2019.
  • [69] A. Kepceoğlu, N. Köklü, Y. Gündoğdu, Ö. Dereli, and H. Kilic, "Analysis of the xylenol isomers by femtosecond laser time of flight mass spectrometry," Canadian Journal of Physics, vol. 96, no. 7, pp. 711-715, 2018.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotokimya, Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Abdullah Kepceoğlu 0000-0002-4743-5517

Yavuz Ekincioğlu 0000-0002-8610-1245

Proje Numarası 118C476 and 122F301
Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 27 Kasım 2023
Kabul Tarihi 28 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kepceoğlu, A., & Ekincioğlu, Y. (2025). Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers. Duzce University Journal of Science and Technology, 13(1), 64-94. https://doi.org/10.29130/dubited.1396459
AMA Kepceoğlu A, Ekincioğlu Y. Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers. DÜBİTED. Ocak 2025;13(1):64-94. doi:10.29130/dubited.1396459
Chicago Kepceoğlu, Abdullah, ve Yavuz Ekincioğlu. “Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 64-94. https://doi.org/10.29130/dubited.1396459.
EndNote Kepceoğlu A, Ekincioğlu Y (01 Ocak 2025) Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers. Duzce University Journal of Science and Technology 13 1 64–94.
IEEE A. Kepceoğlu ve Y. Ekincioğlu, “Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers”, DÜBİTED, c. 13, sy. 1, ss. 64–94, 2025, doi: 10.29130/dubited.1396459.
ISNAD Kepceoğlu, Abdullah - Ekincioğlu, Yavuz. “Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 64-94. https://doi.org/10.29130/dubited.1396459.
JAMA Kepceoğlu A, Ekincioğlu Y. Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers. DÜBİTED. 2025;13:64–94.
MLA Kepceoğlu, Abdullah ve Yavuz Ekincioğlu. “Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 64-94, doi:10.29130/dubited.1396459.
Vancouver Kepceoğlu A, Ekincioğlu Y. Theoretical Investigation of the Molecular Properties of the Fluoroaniline and Fluoroanisole Isomers. DÜBİTED. 2025;13(1):64-9.