Derleme
BibTex RIS Kaynak Göster

Kumarinler: Kimyasal Sentez, Özellikler ve Uygulamalar

Yıl 2025, Cilt: 13 Sayı: 1, 131 - 170, 30.01.2025
https://doi.org/10.29130/dubited.1441144

Öz

Kumarinler, piron ve bir benzen halkası arasında meydana gelen kondenzasyon sonucu oluşan benzopiron yapısı ile karakterize edilen bileşiklerdir. Bu metabolitler çeşitli bitkilerde, mikroorganizmalarda ve süngerlerde ikincil metabolitler olarak yaygın olarak bulunurlar. Bu metabolitler, savunma mekanizmalarında önemli bir rol oynarlar ve geniş çapta yapılan araştırmalar bu bileşiklerle ilişkilendirilen çok sayıda biyolojik aktiviteyi ortaya koymuştur. Kumarin ve türevleri, antimikrobiyal, antikanser, antimitotik, antioksidan, antiinflamatuar ve antikoagülan özellikler dahil olmak üzere geniş bir biyolojik aktivite yelpazesine sahip olmaları nedeniyle yeni ilaç adayları olarak önemli potansiyele sahiptirler. Tıbbi uygulamaların ötesinde, kumarinlerin basit ve çok yönlü iskelet yapıları, gıda üretimi, tarım, kozmetik ve tekstil gibi alanlarda kullanım bulmuştur. Bu derleme, kumarin ve türevlerinin sınıflandırılmasını, çeşitli kimyasal sentez yöntemlerini kapsamaktadır. Ayrıca, kumarinlerin özellikleri, biyolojik aktiviteleri ve çeşitli uygulama alanlarına da değinmektedir.

Kaynakça

  • [1] Ł. Balewski, S. Szulta, A. Jalińska, and A. Kornicka, “A Mini-Review: Recent Advances in Coumarin-Metal Complexes With Biological Properties,” Front. Chem., vol. 9, p. 781779, Dec. 2021, doi: 10.3389/fchem.2021.781779.
  • [2] Y. Wu, J. Xu, Y. Liu, Y. Zeng, and G. Wu, “A Review on Anti-Tumor Mechanisms of Coumarins,” Front. Oncol., vol. 10, p. 592853, Dec. 2020, doi: 10.3389/fonc.2020.592853.
  • [3] C. S. Kılıç, “Herbal coumarins in healthcare,” in Herbal Biomolecules in Healthcare Applications, S. C. Mandal, A. K. Nayak, and A. K. Dhara, Eds., Elsevier, 2022, pp. 363–380. doi: 10.1016/B978-0-323-85852-6.00003-2.
  • [4] M. Musa, J. Cooperwood, and M. O. Khan, “A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer,” Curr. Med. Chem., vol. 15, no. 26, pp. 2664–2679, 2008, doi: 10.2174/092986708786242877. [5] S. C. Heghes, O. Vostinaru, C. Mogosan, D. Miere, C. A. Iuga, and L. Filip, “Safety Profile of Nutraceuticals Rich in Coumarins: An Update,” Front. Pharmacol., vol. 13, p. 803338, Jan. 2022, doi: 10.3389/fphar.2022.803338.
  • [6] M. J. Matos, L. Santana, E. Uriarte, O. A. Abreu, E. Molina, and E. G. Yordi, “Coumarins — An Important Class of Phytochemicals,” in Phytochemicals - Isolation, Characterisation and Role in Human Health, A. V. Rao and L. G. Rao, Eds., InTech, 2015. doi: 10.5772/59982.
  • [7] I. A. Stringlis, R. De Jonge, and C. M. J. Pieterse, “The Age of Coumarins in Plant–Microbe Interactions,” Plant Cell Physiol., vol. 60, no. 7, pp. 1405–1419, Jul. 2019, doi: 10.1093/pcp/pcz076.
  • [8] V. M. Adimule, S. S. Nandi, S. S. Kerur, S. A. Khadapure, and S. Chinnam, “Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review,” Top. Catal., Jan. 2022, doi: 10.1007/s11244-022-01571-z.
  • [9] A. Gliszczyńska and P. E. Brodelius, “Sesquiterpene coumarins,” Phytochem. Rev., vol. 11, pp. 77–96, Nov. 2011, doi: 10.1007/s11101-011-9220-6.
  • [10] F. Bourgaud et al., “Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes,” Phytochem. Rev., vol. 5, no. 2–3, pp. 293–308, Nov. 2006, doi: 10.1007/s11101-006-9040-2.
  • [11] A. Forycka and W. Buchwald, “Variability of composition of essential oil and coumarin compounds of Angelica archangelica L.,” Herba Pol., vol. 65, no. 4, pp. 62–75, Dec. 2019, doi: 10.2478/hepo-2019-0027.
  • [12] S.-M. Yang, G. Y. Shim, B.-G. Kim, and J.-H. Ahn, “Biological synthesis of coumarins in Escherichia coli,” Microb. Cell Factories, vol. 14, no. 1, p. 65, May 2015, doi: 10.1186/s12934-015-0248-y.
  • [13] J. Wang, S. Huang, C. Li, W. Ding, Z. She, and C. Li, “A New Coumarin Produced by Mixed Fermentation of Two Marine Fungi,” Chem. Nat. Compd., vol. 51, pp. 239–241, Mar. 2015, doi: 10.1007/s10600-015-1252-5.
  • [14] T. Umashankar, M. Govindappa, Y. Ramachandra, C. Chandrappa, S. R. Padmalatha, and R. Channabasava, “Isolation, purification and in vitro cytotoxicity activities of coumarin isolated from endophytic fungi, alternariaspecies of crotalaria pallida,” Indo Am. J. Pharm. Res., vol. 5, no. 2, pp. 926–936, 2015.
  • [15] T.-X. Li et al., “Antioxidant coumarin and pyrone derivatives from the insect-associated fungus Aspergillus Versicolor,” Nat. Prod. Res., vol. 34, no. 10, pp. 1360–1365, Nov. 2020, doi: 10.1080/14786419.2018.1509334.
  • [16] S. P. D. Lira et al., “A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis,” J. Braz. Chem. Soc., vol. 18, no. 2, pp. 440–443, Apr. 2007, doi: 10.1590/S0103-50532007000200030.
  • [17] A. Parikh, H. Parikh, and K. Parikh, “Perkin Reaction,” in Name Reactions in Organic Synthesis, 1st ed., Foundation Books, 2012, pp. 338–341. doi: 10.1017/UPO9788175968295.093.
  • [18] T. Symeonidis, M. Chamilos, D. J. Hadjipavlou-Litina, M. Kallitsakis, and K. E. Litinas, “Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors,” Bioorg. Med. Chem. Lett., vol. 19, no. 4, pp. 1139–1142, Feb. 2009, doi: 10.1016/j.bmcl.2008.12.098.
  • [19] A. Song, X. Wang, and K. S. Lam, “A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones,” Tetrahedron Lett., vol. 44, no. 9, pp. 1755–1758, Feb. 2003, doi: 10.1016/S0040-4039(03)00108-4.
  • [20] S. M. Sethna and N. M. Shah, “The Chemistry of Coumarins.,” Chem. Rev., vol. 36, no. 1, pp. 1–62, Feb. 1945, doi: 10.1021/cr60113a001.
  • [21] G. Rabbani, “A Concise Introduction of Perkin Reaction,” Org. Chem. Curr. Res., vol. 07, no. 02, May 2018, doi: 10.4172/2161-0401.1000191.
  • [22] D. Sharma, V. Dhayalan, C. Manikandan, and R. Dandela, “Recent Methods for Synthesis of Coumarin Derivatives and Their New Applications,” in Strategies for the Synthesis of Heterocycles and Their Applications, P. Kumari and A. B. Patel, Eds., IntechOpen, 2022. doi: 10.5772/intechopen.108563.
  • [23] S. Pakdel, B. Akhlaghinia, and A. Mohammadinezhad, “Fe3O4@Boehmite-NH2-CoII NPs: An Environment Friendly Nanocatalyst for Solvent Free Synthesis of Coumarin Derivatives Through Pechmann Condensation Reaction,” Chem. Afr., vol. 3, no. 2, pp. 367–376, Jan. 2019, doi: 10.1007/s42250-019-00042-5.
  • [24] M. Lončarić, D. Gašo-Sokač, S. Jokić, and M. Molnar, “Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials,” Biomolecules, vol. 10, no. 1, p. 151, Jan. 2020, doi: 10.3390/biom10010151.
  • [25] S. Gulati, R. Singh, and S. Sangwan, “A review on convenient synthesis of substituted coumarins using reuseable solid acid catalysts,” RSC Adv., vol. 11, no. 47, pp. 29130–29155, Sep. 2021, doi: 10.1039/D1RA04887B.
  • [26] A. Y. Mohammed and L. S. Ahamed, “Synthesis and Characterization of New Substituted Coumarin Derivatives and Study Their Biological Activity,” Chem. Methodol., no. Online First, Aug. 2022, doi: 10.22034/CHEMM.2022.349124.1569.
  • [27] Y. Rangraz, S. M. Vadat, and S. Khaksar, “SnO2 nanoparticles: A recyclable and heterogeneous catalyst for Pechmann condensation of coumarins and Knoevenagel condensation-Michael addition of biscoumarins.” Accessed: Jul. 30, 2024. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/37123921/
  • [28] S. S. Vagh, B.-J. Hou, A. Edukondalu, P.-C. Wang, and W. Lin, “Phosphine-Mediated MBH-Type/Acyl Transfer/Wittig Sequence for Construction of Functionalized Furo[3,2-c]coumarins,” Org. Lett., vol. 23, no. 3, pp. 842–846, Jan. 2021, doi: 10.1021/acs.orglett.0c04082.
  • [29] S. Yang et al., “Diversity‐Oriented Synthesis of Furo[3,2‐c]coumarins and Benzofuranyl Chromenones through Chemoselective Acylation/Wittig Reaction,” Angew. Chem., vol. 130, no. 6, pp. 1684–1688, Dec. 2017, doi: 10.1002/ange.201711524.
  • [30] B. Zhao et al., “Reformatsky Reaction Promoted by an Ionic Liquid ([Bmim]Cl) in the Synthesis of β-Hydroxyl Ketone Derivatives Bearing a Coumarin Unit,” J. Chem. Res., vol. 36, no. 7, pp. 393–395, Jul. 2012, doi: 10.3184/174751912X13371652436057.
  • [31] M. Bakthadoss and R. Selvakumar, “One-Pot Synthesis of Benzothiazole-Tethered Chromanones/Coumarins via Claisen Rearrangement Using the Solid State Melt Reaction,” J. Org. Chem., vol. 81, no. 8, pp. 3391–3399, Mar. 2016, doi: 10.1021/acs.joc.5b02920.
  • [32] S. Aoki, C. Amamoto, J. Oyamada, and T. Kitamura, “A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives,” Tetrahedron, vol. 61, no. 39, pp. 9291–9297, Sep. 2005, doi: 10.1016/j.tet.2005.07.062.
  • [33] I. Ansary and A. Taher, “One-Pot Synthesis of Coumarin Derivatives,” in Phytochemicals in Human Health, V. Rao, D. Mans, and L. Rao, Eds., IntechOpen, 2019, p. 298. doi: 10.5772/intechopen.89013.
  • [34] D. Wang et al., “Synthesis of V‐Shaped Bis‐coumarins through Aldol Reaction/Double Lactonization Cascade Reaction from Bis(2‐hydroxyphenyl)methanone and Meldrum’s Acid,” Eur. J. Org. Chem., vol. 2022, no. 13, Mar. 2022, doi: 10.1002/ejoc.202101489.
  • [35] B. M. Trost, F. D. Toste, and K. Greenman, “Atom Economy Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net C−H Insertion,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4518–4526, Mar. 2003, doi: 10.1021/ja0286573.
  • [36] Md. Kutubi, T. Hashimoto, and T. Kitamura, “Improved Synthesis of Coumarins by Iron(III)-Catalyzed Cascade Reaction of Propiolic Acids and Phenols,” Synthesis, vol. 2011, no. 08, pp. 1283–1289, Mar. 2011, doi: 10.1055/s-0030-1258473.
  • [37] K. Park, I. Jung, and Y. Chung, “Synthesis of Coumarins Catalyzed by Heterobimetallic Co/Rh Nanoparticles,” Synlett, vol. 2004, no. 14, pp. 2541–2544, Oct. 2004, doi: 10.1055/s-2004-834826.
  • [38] R. Leão, P. de F. de Moraes, M. Pedro, and P. Costa, “Synthesis of Coumarins and Neoflavones through Zinc Chloride Catalyzed Hydroarylation of Acetylenic Esters with Phenols,” Synthesis, vol. 2011, no. 22, pp. 3692–3696, Oct. 2011, doi: 10.1055/s-0031-1289576.
  • [39] A. Thakur, R. Singla, and V. Jaitak, “Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies,” Eur. J. Med. Chem., vol. 101, pp. 476–495, Aug. 2015, doi: 10.1016/j.ejmech.2015.07.010.
  • [40] V. Sharma et al., “Synthesis, Electrochemical Studies, Molecular Docking, and Biological Evaluation as an Antimicrobial Agent of 5-Amino-6-cyano-3-hydroxybenzo[c]coumarin Using Ni–Cu–Al–CO3 Hydrotalcite as a Catalyst,” ACS Omega, vol. 7, no. 18, pp. 15718–15727, Apr. 2022, doi: 10.1021/acsomega.2c00666.
  • [41] D. U. C. Rahayu et al., “Microwave-Assisted Synthesis Of 4-Methyl Coumarins, Their Antioxidant and Antibacterial Activities,” RASAYAN J. Chem., vol. 15, no. 2, pp. 1053–1062, 2022, doi: 10.31788/RJC.2022.1526780.
  • [42] M. Özdemir, F. Biryan, K. Koran, B. Yalçın, and A. O. Görgülü, “Synthesis, structural characterization, therotical and electrical properties of novel sulpho-coumarin based methacrylate polymer,” J. Polym. Res., vol. 29, no. 190, Apr. 2022, doi: 10.1007/s10965-022-03034-1.
  • [43] R. O. Juvonen, M. Ahinko, J. Huuskonen, H. Raunio, and O. T. Pentikäinen, “Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes,” Xenobiotica, vol. 49, no. 9, pp. 1015–1024, Sep. 2019, doi: 10.1080/00498254.2018.1530399.
  • [44] Ş. N. Karuk Elmas et al., “Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO32- anions in aqueous solution and living cells,” Talanta, vol. 188, pp. 614–622, Oct. 2018, doi: 10.1016/j.talanta.2018.06.036.
  • [45] C. Schultze and B. Schmidt, “Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence,” J. Org. Chem., vol. 83, no. 9, pp. 5210–5224, May 2018, doi: 10.1021/acs.joc.8b00667.
  • [46] C. Schultze and B. Schmidt, “Ring-closing-metathesis-based synthesis of annellated coumarins from 8-allylcoumarins,” Beilstein J. Org. Chem., vol. 14, pp. 2991–2998, Dec. 2018, doi: 10.3762/bjoc.14.278.
  • [47] S. Rauhamäki et al., “Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors,” Front. Chem., vol. 6, no. 41, Mar. 2018, doi: 10.3389/fchem.2018.00041.
  • [48] R. Dharavath et al., “Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles,” RSC Adv., vol. 10, no. 20, pp. 11615–11623, Mar. 2020, doi: 10.1039/D0RA01052A.
  • [49] A. R. Ferreira, D. D. N. Alves, R. D. De Castro, Y. Perez-Castillo, and D. P. De Sousa, “Synthesis of Coumarin and Homoisoflavonoid Derivatives and Analogs: The Search for New Antifungal Agents,” Pharmaceuticals, vol. 15, no. 6, p. 712, Jun. 2022, doi: 10.3390/ph15060712.
  • [50] K. D. Dhawale, A. P. Ingale, M. S. Pansare, S. S. Gaikwad, N. M. Thorat, and L. R. Patil, “Sulfated Tungstate as a Heterogeneous Catalyst for Synthesis of 3-Functionalized Coumarins under Solvent-Free Conditions,” Polycycl. Aromat. Compd., vol. 43, no. 4, pp. 3588–3600, Apr. 2023, doi: 10.1080/10406638.2022.2074477.
  • [51] A. Fais et al., “Coumarin derivatives as promising xanthine oxidase inhibitors,” Int. J. Biol. Macromol., vol. 120(Pt A), pp. 1286–1293, Dec. 2018, doi: 10.1016/j.ijbiomac.2018.09.001.
  • [52] S. Qi et al., “Coumarin/fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 204, pp. 590–597, Nov. 2018, doi: 10.1016/j.saa.2018.06.095.
  • [53] H. M. Mali et al., “Rational design of coumarin derivatives as antituberculosis agents,” Future Med. Chem., vol. 10, no. 20, pp. 2431–2444, Oct. 2018, doi: 10.4155/fmc-2018-0015.
  • [54] O. Ivanova, V. Andronov, I. Levina, A. Chagarovskiy, L. Voskressensky, and I. Trushkov, “Convenient Synthesis of Functionalized Cyclopropa[c]coumarin-1a-carboxylates,” Molecules, vol. 24, no. 1, p. 57, Dec. 2018, doi: 10.3390/molecules24010057.
  • [55] C. S. Wijesooriya, M. Nieszala, A. Stafford, J. R. Zimmerman, and E. A. Smith, “Coumarin‐based Fluorescent Probes for Selectively Targeting and Imaging the Endoplasmic Reticulum in Mammalian Cells,” Photochem. Photobiol., vol. 95, no. 2, pp. 556–562, Mar. 2019, doi: 10.1111/php.12985.
  • [56] M. Shangguan et al., “A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells,” Talanta, vol. 202, pp. 303–307, Sep. 2019, doi: 10.1016/j.talanta.2019.04.074.
  • [57] D. S. Reddy et al., “Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin,” Bioorganic Chem., vol. 92, p. 103212, Nov. 2019, doi: 10.1016/j.bioorg.2019.103212.
  • [58] J. R. Hwu et al., “Chikungunya virus inhibition by synthetic coumarin–guanosine conjugates,” Eur. J. Med. Chem., vol. 166, pp. 136–143, Mar. 2019, doi: 10.1016/j.ejmech.2019.01.037.
  • [59] R. Beninatto et al., “Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications,” Mater. Sci. Eng. C, vol. 96, pp. 625–634, Mar. 2019, doi: 10.1016/j.msec.2018.11.052.
  • [60] K. S. Mani et al., “Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 214, pp. 170–176, May 2019, doi: 10.1016/j.saa.2019.02.020.
  • [61] B. Zhang, L. Xu, Y. Zhou, W. Zhang, Y. Wang, and Y. Zhu, “Synthesis and activity of a coumarin‐based fluorescent probe for hydroxyl radical detection,” Luminescence, vol. 35, no. 2, pp. 305–311, Mar. 2020, doi: 10.1002/bio.3728.
  • [62] W.-L. Lee, T.-W. Hsu, W.-C. Hung, and J.-M. Fang, “A copper(ii)–dipicolylamine–coumarin sensor for maltosyltransferase assay,” Dalton Trans., vol. 48, no. 23, pp. 8026–8029, Jun. 2019, doi: 10.1039/C9DT01339C.
  • [63] F. Rodríguez-Enríquez et al., “Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy,” Bioorganic Chem., vol. 104, p. 104203, Nov. 2020, doi: 10.1016/j.bioorg.2020.104203.
  • [64] S. K. Konidala, V. Kotra, R. C. S. R. Danduga, and P. K. Kola, “Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking,” Bioorganic Chem., vol. 104, p. 104207, Nov. 2020, doi: 10.1016/j.bioorg.2020.104207.
  • [65] D. Iacopini, A. Moscardini, F. Lessi, V. Di Bussolo, S. Di Pietro, and G. Signore, “Coumarin-based fluorescent biosensor with large linear range for ratiometric measurement of intracellular pH,” Bioorganic Chem., vol. 105, p. 104372, Dec. 2020, doi: 10.1016/j.bioorg.2020.104372.
  • [66] M. B. Majnooni, S. Fakhri, Y. Shokoohinia, M. Mojarrab, S. Kazemi-Afrakoti, and M. H. Farzaei, “Isofraxidin: Synthesis, Biosynthesis, Isolation, Pharmacokinetic and Pharmacological Properties,” Molecules, vol. 25, no. 9, p. 2040, Apr. 2020, doi: 10.3390/molecules25092040.
  • [67] A. R. Nesaragi et al., “Green synthesis of therapeutically active 1,3,4-oxadiazoles as antioxidants, selective COX-2 inhibitors and their in silico studies,” Bioorg. Med. Chem. Lett., vol. 43, p. 128112, Jul. 2021, doi: 10.1016/j.bmcl.2021.128112.
  • [68] M. Seydimemet, K. Ablajan, M. Hamdulla, W. Li, A. Omar, and M. Obul, “l -Proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3-c]pyrazoles under ultrasonic irradiation,” Tetrahedron, vol. 72, no. 47, pp. 7599–7605, Nov. 2016, doi: 10.1016/j.tet.2016.10.016.
  • [69] M. R. Bhosle, S. A. Joshi, and G. M. Bondle, “An efficient contemporary multicomponent synthesis for the facile access to coumarin‐fused new thiazolyl chromeno[4,3‐b]quinolones in aqueous micellar medium,” J. Heterocycl. Chem., vol. 57, no. 1, pp. 456–468, Oct. 2019, doi: 10.1002/jhet.3802.
  • [70] G. Brahmachari, M. Mandal, I. Karmakar, K. Nurjamal, and B. Mandal, “Ultrasound-Promoted Expedient and Green Synthesis of Diversely Functionalized 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1H,3H)-diones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions,” ACS Sustain. Chem. Eng., vol. 7, no. 6, pp. 6369–6380, Feb. 2019, doi: 10.1021/acssuschemeng.9b00133.
  • [71] G. Brahmachari, I. Karmakar, and K. Nurjamal, “Ultrasound-Assisted Expedient and Green Synthesis of a New Series of Diversely Functionalized 7-Aryl/heteroarylchromeno[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-ones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions,” ACS Sustain. Chem. Eng., vol. 6, no. 8, pp. 11018–11028, Jun. 2018, doi: 10.1021/acssuschemeng.8b02448.
  • [72] S. Kanchithalaivan, R. V. Sumesh, and R. R. Kumar, “Ultrasound-Assisted Sequential Multicomponent Strategy for the Combinatorial Synthesis of Novel Coumarin Hybrids,” ACS Comb. Sci., vol. 16, no. 10, pp. 566–572, Oct. 2014, doi: 10.1021/co500092b.
  • [73] A. R. Karimi, R. Davood Abadi, and Z. Dalirnasab, “Synthesis of mono- and bis-spiro-2-amino-4H-pyrans catalyzed by S-alkyl O-hydrogen sulfothioate functionalized silica-coated magnetic nanoparticles under ultrasound irradiation,” Res. Chem. Intermed., vol. 41, pp. 7427–7435, Oct. 2014, doi: 10.1007/s11164-014-1834-z.
  • [74] Y. Jain, M. Kumari, R. P. Singh, D. Kumar, and R. Gupta, “Sonochemical Decoration of Graphene Oxide with Magnetic Fe3O4@CuO Nanocomposite for Efficient Click Synthesis of Coumarin-Sugar Based Bioconjugates and Their Cytotoxic Activity,” Catal. Lett., vol. 150, pp. 1142–1154, Oct. 2019, doi: 10.1007/s10562-019-02982-6.
  • [75] M. Feizpour Bonab, S. Soleimani-Amiri, and B. Mirza, “Fe3O4@C@PrS-SO3H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst in the Ultrasound-Assisted Synthesis of Coumarin Derivatives,” Polycycl. Aromat. Compd., vol. 43, no. 2, pp. 1628–1643, Jan. 2022, doi: 10.1080/10406638.2022.2032768.
  • [76] F. Zarei, S. Soleimani-Amiri, and Z. Azizi, “Heterogeneously Catalyzed Pechmann Condensation Employing the HFe(SO 4 ) 2 .4H 2 O-Chitosan Nano-Composite: Ultrasound-Accelerated Green Synthesis of Coumarins,” Polycycl. Aromat. Compd., vol. 42, no. 9, pp. 6072–6089, Sep. 2021, doi: 10.1080/10406638.2021.1973520.
  • [77] S. M. Gomha and K. D. Khalil, “A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity,” Molecules, vol. 17, no. 8, pp. 9335–9347, Aug. 2012, doi: 10.3390/molecules17089335.
  • [78] A. Jain, R. Gupta, and M. Agarwal, “Instantaneous and Selective Bare Eye Detection of Inorganic Fluoride Ion by Coumarin–Pyrazole‐Based Receptors,” J. Heterocycl. Chem., vol. 54, no. 5, pp. 2808–2816, Sep. 2017, doi: 10.1002/jhet.2884.
  • [79] K. Skalicka‐Woźniak and K. Głowniak, “Coumarins: Analytical and Preparative Techniques,” in Handbook of Chemical and Biological Plant Analytical Methods, 1st ed., vol. 3, K. Hostettmann, Ed., UK: John Wiley & Sons Ltd, 2014, pp. 569–594. doi: 10.1002/9780470027318.a9925.
  • [80] D. Egan, R. O’kennedy, E. Moran, D. Cox, E. Prosser, and R. D. Thornes, “The Pharmacology, Metabolism, Analysis, and Applications of Coumarin and Coumarin-Related Compounds,” Drug Metab. Rev., vol. 22, no. 5, pp. 503–529, 1990, doi: 10.3109/03602539008991449.
  • [81] N. Abid-Jarraya, K. Khemakhem, H. Turki-Guermazi, S. Abid, N. Saffon, and S. Fery-Forgues, “Solid-state fluorescence properties of small iminocoumarin derivatives and their analogues in the coumarin series,” Dyes Pigments, vol. 132, pp. 177–184, Apr. 2016, doi: 10.1016/j.dyepig.2016.04.039.
  • [82] A. Cocco et al., “Synthesis and Photophysical Properties of Fluorescent 6-Aryl-D-π-A Coumarin Derivatives,” ACS Omega, vol. 6, no. 49, pp. 33708–33716, Nov. 2021, doi: 10.1021/acsomega.1c04810.
  • [83] N. M. Sarih et al., “Furo[3,2-c]coumarin-derived Fe3+ Selective Fluorescence Sensor: Synthesis, Fluorescence Study and Application to Water Analysis,” Sci. Rep., vol. 10, no. 1, p. 7421, May 2020, doi: 10.1038/s41598-020-63262-7.
  • [84] C. Hua et al., “High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study,” RSC Adv., vol. 6, no. 54, pp. 49221–49227, May 2016, doi: 10.1039/C6RA05996A.
  • [85] F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini, and A. Pinto, “An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities,” Int. J. Mol. Sci., vol. 21, no. 13, Art. no. 13, Jan. 2020, doi: 10.3390/ijms21134618.
  • [86] R. H. Olie, K. Winckers, B. Rocca, and H. ten Cate, “Oral Anticoagulants Beyond Warfarin,” Annu. Rev. Pharmacol. Toxicol., vol. 64, no. 2024, pp. 551–575, Sep. 2023, doi: https://doi.org/10.1146/annurev-pharmtox-032823- 122811.
  • [87] N. C. Bang, A. Z. Abyshev, and D. Yu. Ivkin, “Synthesis and In Vivo Evaluation of New Coumarin Conjugates as Potential Indirect-Action Anticoagulants,” Pharm. Chem. J., vol. 53, no. 5, pp. 419–422, Aug. 2019, doi: 10.1007/s11094-019-02013-z.
  • [88] T. M. Ramsis, M. A. Ebrahim, and E. A. Fayed, “Synthetic coumarin derivatives with anticoagulation and antiplatelet aggregation inhibitory effects,” Med. Chem. Res., vol. 32, no. 11, pp. 2269–2278, Nov. 2023, doi: 10.1007/s00044-023-03148-1.
  • [89] L. Gao, F. Wang, Y. Chen, F. Li, B. Han, and D. Liu, “The antithrombotic activity of natural and synthetic coumarins,” Fitoterapia, vol. 154, p. 104947, Oct. 2021, doi: 10.1016/j.fitote.2021.104947.
  • [90] E. Quezada et al., “Synthesis and Vasorelaxant and Platelet Antiaggregatory Activities of a New Series of 6-Halo-3-phenylcoumarins,” Molecules, vol. 15, no. 1, Art. no. 1, Jan. 2010, doi: 10.3390/molecules15010270.
  • [91] P.-H. Lu et al., “Coumarin Derivatives Inhibit ADP-Induced Platelet Activation and Aggregation,” Molecules, vol. 27, no. 13, p. 4054, Jun. 2022, doi: https://doi.org/10.3390/molecules27134054.
  • [92] Ii. Mazreku, I. Rudhani, L. Lajqi, M. H. Ibrahimi, and A. Haziri, “Some Experimental Studies on the Anticoagulant Activity of the Synthetic Coumarin Derivatives,” Jordan J. Biol. Sci., vol. 15, no. 04, pp. 643–647, Dec. 2022, doi: 10.54319/jjbs/150413.
  • [93] M. Hrubša et al., “Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs,” Med. Chem. Shariqah United Arab Emir., vol. 18, no. 5, pp. 536–543, 2022, doi: 10.2174/1573406417666211026150658.
  • [94] E. Berrino et al., “A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration,” Antioxidants, vol. 12, no. 12, Art. no. 12, Dec. 2023, doi: 10.3390/antiox12122044.
  • [95] Q. Zhang et al., “Natural source, bioactivity and synthesis of 3-Arylcoumarin derivatives,” J. Enzyme Inhib. Med. Chem., vol. 37, no. 1, pp. 1023–1042, Dec. 2022, doi: 10.1080/14756366.2022.2058499.
  • [96] E. H. M. Hassanein, A. M. Sayed, O. E. Hussein, and A. M. Mahmoud, “Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway,” Oxid. Med. Cell. Longev., vol. 2020, no. 1, p. 1675957, Apr. 2020, doi: https://doi.org/10.1155/2020/1675957.
  • [97] Q. Chu et al., “Studies on the Neuroprotection of Osthole on Glutamate-Induced Apoptotic Cells and an Alzheimer’s Disease Mouse Model via Modulation Oxidative Stress,” Appl. Biochem. Biotechnol., vol. 190, no. 2, pp. 634–644, Feb. 2020, doi: 10.1007/s12010-019-03101-2.
  • [98] N. K. Kordulewska et al., “Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages,” Nutrients, vol. 13, no. 1, p. 123, Dec. 2020, doi: 10.3390/nu13010123.
  • [99] M. O. Hindam, R. H. Sayed, K. Skalicka-Woźniak, B. Budzyńska, and N. S. E. Sayed, “Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer’s disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation,” Phytother. Res., vol. 34, no. 9, 2020, doi: 10.1002/ptr.6686.
  • [100] D. Stasi and L. C, “Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs,” Pharmaceuticals, vol. 16, no. 4, Art. no. 4, Apr. 2023, doi: 10.3390/ph16040511.
  • [101] M. Abomosallam, B. M. Hendam, A. A. Abdallah, R. Refaat, and H. N. G. EL-Hak, “Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway,” Inflammopharmacology, vol. 32, no. 3, pp. 1903–1928, Jun. 2024, doi: 10.1007/s10787-024-01461-8.
  • [102] F. Villavicencio Tejo and R. A. Quintanilla, “Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer’s Disease,” Antioxidants, vol. 10, no. 7, Art. no. 7, Jul. 2021, doi: 10.3390/antiox10071069.
  • [103] A. Benazzouz-Touami et al., “New Coumarin-Pyrazole hybrids: Synthesis, Docking studies and Biological evaluation as potential cholinesterase inhibitors,” J. Mol. Struct., vol. 1249, p. 131591, Feb. 2022, doi: 10.1016/j.molstruc.2021.131591.
  • [104] Y.-H. Hu et al., “Synthesis and biological evaluation of 3–(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents,” J. Enzyme Inhib. Med. Chem., vol. 34, no. 1, pp. 1083–1092, Jan. 2019, doi: 10.1080/14756366.2019.1615484.
  • [105] M. Huang, S.-S. Xie, N. Jiang, J.-S. Lan, L.-Y. Kong, and X.-B. Wang, “Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease,” Bioorg. Med. Chem. Lett., vol. 25, no. 3, pp. 508–513, Feb. 2015, doi: 10.1016/j.bmcl.2014.12.034.
  • [106] Y.-J. Chiu et al., “Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2H-Chromen-2-One Activates CREB-Mediated Neuroprotection in Aβ and Tau Cell Models of Alzheimer’s Disease,” Oxid. Med. Cell. Longev., vol. 2021, no. 1, p. 3058861, 2021, doi: 10.1155/2021/3058861.
  • [107] E. Babaei et al., “Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease,” Front. Chem., vol. 10, Jun. 2022, doi: 10.3389/fchem.2022.895483.
  • [108] M. F. Urmeneta-Ortíz, A. R. Tejeda-Martínez, O. González-Reynoso, and M. E. Flores-Soto, “Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson’s Disease,” Park. Dis., vol. 2024, no. 1, p. 5519396, 2024, doi: 10.1155/2024/5519396.
  • [109] E. Bester, A. Petzer, and J. P. Petzer, “Coumarin derivatives as inhibitors of d-amino acid oxidase and monoamine oxidase,” Bioorganic Chem., vol. 123, p. 105791, Jun. 2022, doi: 10.1016/j.bioorg.2022.105791.
  • [110] A. K. El-Damasy et al., “Novel coumarin benzamides as potent and reversible monoamine oxidase-B inhibitors: Design, synthesis, and neuroprotective effects,” Bioorganic Chem., vol. 142, p. 106939, Jan. 2024, doi: 10.1016/j.bioorg.2023.106939.
  • [111] K. V. Sashidhara et al., “Discovery of 3-Arylcoumarin-tetracyclic Tacrine Hybrids as Multifunctional Agents against Parkinson’s Disease,” ACS Med. Chem. Lett., vol. 5, no. 10, pp. 1099–1103, Oct. 2014, doi: 10.1021/ml500222g.
  • [112] S. N. K. Kumar et al., “Scopoletin Augments DJ1/Nrf2 Signalling and Prevents Protein Aggregation in Parkinson’s disease,” Feb. 05, 2018, bioRxiv. doi: 10.1101/260521.
  • [113] D. Tao et al., “Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease,” Eur. J. Med. Chem., vol. 173, pp. 203–212, Jul. 2019, doi: 10.1016/j.ejmech.2019.04.016.
  • [114] S. Ham et al., “Therapeutic Evaluation of Synthetic Peucedanocoumarin III in an Animal Model of Parkinson’s Disease,” Int. J. Mol. Sci., vol. 20, no. 21, Art. no. 21, Jan. 2019, doi: 10.3390/ijms20215481.
  • [115] Md. A. Hannan et al., “Protective Mechanisms of Nootropic Herb Shankhpushpi (Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach,” Evid. Based Complement. Alternat. Med., vol. 2022, no. 1, p. 1015310, 2022, doi: 10.1155/2022/1015310.
  • [116] P. Pradhan, O. Majhi, A. Biswas, V. K. Joshi, and D. Sinha, “Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson’s model,” Cell Death Dis., vol. 11, no. 9, pp. 1–11, Sep. 2020, doi: 10.1038/s41419-020-02942-8.
  • [117] A. S. Sayed, N. S. El Sayed, B. Budzyńska, K. Skalicka-Woźniak, M. K. Ahmed, and E. A. Kandil, “Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson’s disease model,” Life Sci., vol. 310, p. 121129, Dec. 2022, doi: 10.1016/j.lfs.2022.121129.
  • [118] A. Rawat and A. V. B. Reddy, “Recent advances on anticancer activity of coumarin derivatives,” Eur. J. Med. Chem. Rep., vol. 5, p. 100038, Aug. 2022, doi: 10.1016/j.ejmcr.2022.100038.
  • [119] A. K. Yadav, R. Maharjan Shrestha, and P. N. Yadav, “Anticancer mechanism of coumarin-based derivatives,” Eur. J. Med. Chem., vol. 267, p. 116179, Mar. 2024, doi: 10.1016/j.ejmech.2024.116179.
  • [120] F.-Q. Shen et al., “Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX,” Bioorg. Med. Chem. Lett., vol. 27, no. 16, pp. 3653–3660, Aug. 2017, doi: 10.1016/j.bmcl.2017.07.020.
  • [121] T. K. Mohamed, R. Z. Batran, S. A. Elseginy, M. M. Ali, and A. E. Mahmoud, “Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis,” Bioorganic Chem., vol. 85, pp. 253–273, Apr. 2019, doi: 10.1016/j.bioorg.2018.12.040.
  • [122] S. D. Durgapal and S. S. Soman, “Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents,” Synth. Commun., vol. 49, no. 21, pp. 2869–2883, Nov. 2019, doi: 10.1080/00397911.2019.1647439.
  • [123] Y. Wang, W. Zhang, J. Dong, and J. Gao, “Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents,” Bioorganic Chem., vol. 95, p. 103530, Jan. 2020, doi: 10.1016/j.bioorg.2019.103530.
  • [124] F. Hersi et al., “Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins,” Sci. Rep., vol. 10, no. 1, p. 2893, Feb. 2020, doi: 10.1038/s41598-020-59685-x.
  • [125] E. Y. Ahmed, N. A. Abdel Latif, M. F. El-Mansy, W. S. Elserwy, and O. M. Abdelhafez, “VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents,” Bioorg. Med. Chem., vol. 28, no. 5, p. 115328, Mar. 2020, doi: 10.1016/j.bmc.2020.115328.
  • [126] G. Achar, R. V. C., U. K., and S. Budagumpi, “Coumarin‐tethered (benz)imidazolium salts and their silver(I) N‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure and antibacterial studies,” Appl. Organomet. Chem., vol. 31, no. 11, p. e3770, Mar. 2017, doi: 10.1002/aoc.3770.
  • [127] R. R. Chavan and K. M. Hosamani, “Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid,” R. Soc. Open Sci., vol. 5, May 2018, doi: 10.1098/rsos.172435.
  • [128] J. Pozo-Martínez et al., “Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole,” Arab. J. Chem., vol. 15, no. 3, p. 103641, Mar. 2022, doi: 10.1016/j.arabjc.2021.103641.
  • [129] Y. Hu, B. Wang, J. Yang, T. Liu, J. Sun, and X. Wang, “Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents,” J. Enzyme Inhib. Med. Chem., vol. 34, no. 1, pp. 15–30, Dec. 2019, doi: 10.1080/14756366.2018.1518958.
  • [130] N. George, B. A. Sabahi, M. AbuKhader, K. A. Balushi, Md. J. Akhtar, and S. A. Khan, “Design, synthesis and in vitro biological activities of coumarin linked 1,3,4-oxadiazole hybrids as potential multi-target directed anti-Alzheimer agents,” J. King Saud Univ. - Sci., vol. 34, no. 4, Jun. 2022, doi: 10.1016/j.jksus.2022.101977.
  • [131] A. R. Bhat, “Biological Activity of Pyrimidine Derivativies: A Review,” Org. Med. Chem., vol. 2, no. 2, p. 555581, Apr. 2017, doi: DOI:10.19080/omcij.2017.02.555581.
  • [132] A. Srivastava, V. Mishra, P. Singh, and R. Kumar, “Coumarin‐based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications,” J. Appl. Polym. Sci., vol. 126, no. 2, pp. 395–407, Apr. 2012, doi: 10.1002/app.36999.
  • [133] Z. Nofal, M. El-Zahar, and S. Abd El-Karim, “Novel Coumarin Derivatives with Expected Biological Activity,” Molecules, vol. 5, no. 2, pp. 99–113, Feb. 2000, doi: 10.3390/50200099.
  • [134] A. A. Emmanuel‐Giota, K. C. Fylaktakidou, K. E. Litinas, D. N. Nicolaides, and D. J. Hadjipavlou‐Litina, “Synthesis and biological evaluation of several 3‐(coumarin‐4‐yl)tetrahydroisoxazole and 3‐(coumarin‐4‐yl)dihydropyrazole derivatives,” J. Heterocycl. Chem., vol. 38, no. 3, pp. 717–722, Mar. 2001, doi: 10.1002/jhet.5570380329.
  • [135] R. M. Shaker, “Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities,” Pharmazie, vol. 51, no. 3, pp. 148–151, Mar. 1996.
  • [136] T. Patonay, G. Litkei, R. Bognár, J. Erdei, and C. Miszti, “Synthesis, antibacterial and antifungal activity of 4-hydroxycoumarin derivatives, analogues of novobiocin,” Pharmazie, vol. 39, no. 2, pp. 84–91, Feb. 1984.
  • [137] M. Erşatır and E. S. Giray, “Synthesis of Various Chalcone-Coumarin Hybrid Compounds,” Çukurova Univ. Grad. Sch. Nat. Appl. Sci., vol. 35, no. 6, pp. 111–120, 2018.
  • [138] M. Asif, “Overview of Diverse Pharmacological Activities of Substituted Coumarins: Compounds with Therapeutic Potentials,” Med. Chem., Jan. 2015, [Online]. Available: https://api.semanticscholar.org/CorpusID:94501826}
  • [139] X. Zhou, M. Li, X.-B. Wang, T. Wang, and L.-Y. Kong, “Synthesis of Benzofuran Derivatives via Rearrangement and Their Inhibitory Activity on Acetylcholinesterase,” Molecules, vol. 15, no. 12, pp. 8593–601, Nov. 2010, doi: 10.3390/molecules15128593.
  • [140] A. M. Saleh, M. M. Y. Madany, and L. González, “The Effect of Coumarin Application on Early Growth and Some Physiological Parameters in Faba Bean (Vicia faba L.),” J. Plant Growth Regul., vol. 34, no. 2, pp. 233–241, Nov. 2014, doi: 10.1007/s00344-014-9459-4.
  • [141] N. V. Soucy, “Acetophenone,” in Encyclopedia of Toxicology, Academic Press: Elsevier, 2014, pp. 43–45. doi: 10.1016/B978-0-12-386454-3.01157-X.
  • [142] K. Robe, E. Izquierdo, F. Vignols, H. Rouached, and C. Dubos, “The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health,” Trends Plant Sci., vol. 26, no. 3, pp. 248–259, Mar. 2021, doi: 10.1016/j.tplants.2020.10.008.
  • [143] S. Malla, M. A. G. Koffas, R. J. Kazlauskas, and B.-G. Kim, “Production of 7-O-Methyl Aromadendrin, a Medicinally Valuable Flavonoid, in Escherichia coli,” Appl. Environ. Microbiol., vol. 78, no. 3, pp. 684–694, Feb. 2012, doi: 10.1128/AEM.06274-11.
  • [144] K. Kai, B. Shimizu, M. Mizutani, K. Watanabe, and K. Sakata, “Accumulation of coumarins in Arabidopsis thaliana,” Phytochemistry, vol. 67, no. 4, pp. 379–386, Feb. 2006, doi: 10.1016/j.phytochem.2005.11.006.
  • [145] K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity,” BioMed Res. Int., vol. 2013, no. 963248, pp. 1–14, Mar. 2013, doi: 10.1155/2013/963248.
  • [146] A. Stefanachi, F. Leonetti, L. Pisani, M. Catto, and A. Carotti, “Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds,” Molecules, vol. 23, no. 2, p. 250, Jan. 2018, doi: 10.3390/molecules23020250.

Coumarins: Chemical Synthesis, Properties and Applications

Yıl 2025, Cilt: 13 Sayı: 1, 131 - 170, 30.01.2025
https://doi.org/10.29130/dubited.1441144

Öz

Coumarins are compounds characterized by a benzopyrone structure resulting from the condensation of pyrone and a benzene ring. They are commonly found as secondary metabolites in various plants, microorganisms, and sponges. These metabolites play a crucial role in defence mechanisms, and extensive research has revealed numerous biological activities associated with these compounds. Coumarin and its derivatives show significant potential as candidates for new drugs due to their exceptional biocompatibility and a wide range of biological activities, including antimicrobial, anticancer, antimitotic, antioxidant, anti-inflammatory, and anticoagulant properties. Beyond medicinal applications, the simple and versatile scaffold structures of coumarins have found use in fields such as food production, agriculture, cosmetics, and textiles. This review covers the classification of coumarin and its derivatives, as well as various chemical synthesis methods. Furthermore, it delves into the properties, biological activities, and diverse application areas of coumarins.

Etik Beyan

Since this study is a data collection study (review), it does not have experimental data. Therefore, ethics committee approval was not obtained because it does not require ethics committee approval.

Teşekkür

The authors thank Research Assistant Dr. Ayhan Yilmaz (Dumlupinar University, Department of Biology) for proofreading the article.

Kaynakça

  • [1] Ł. Balewski, S. Szulta, A. Jalińska, and A. Kornicka, “A Mini-Review: Recent Advances in Coumarin-Metal Complexes With Biological Properties,” Front. Chem., vol. 9, p. 781779, Dec. 2021, doi: 10.3389/fchem.2021.781779.
  • [2] Y. Wu, J. Xu, Y. Liu, Y. Zeng, and G. Wu, “A Review on Anti-Tumor Mechanisms of Coumarins,” Front. Oncol., vol. 10, p. 592853, Dec. 2020, doi: 10.3389/fonc.2020.592853.
  • [3] C. S. Kılıç, “Herbal coumarins in healthcare,” in Herbal Biomolecules in Healthcare Applications, S. C. Mandal, A. K. Nayak, and A. K. Dhara, Eds., Elsevier, 2022, pp. 363–380. doi: 10.1016/B978-0-323-85852-6.00003-2.
  • [4] M. Musa, J. Cooperwood, and M. O. Khan, “A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer,” Curr. Med. Chem., vol. 15, no. 26, pp. 2664–2679, 2008, doi: 10.2174/092986708786242877. [5] S. C. Heghes, O. Vostinaru, C. Mogosan, D. Miere, C. A. Iuga, and L. Filip, “Safety Profile of Nutraceuticals Rich in Coumarins: An Update,” Front. Pharmacol., vol. 13, p. 803338, Jan. 2022, doi: 10.3389/fphar.2022.803338.
  • [6] M. J. Matos, L. Santana, E. Uriarte, O. A. Abreu, E. Molina, and E. G. Yordi, “Coumarins — An Important Class of Phytochemicals,” in Phytochemicals - Isolation, Characterisation and Role in Human Health, A. V. Rao and L. G. Rao, Eds., InTech, 2015. doi: 10.5772/59982.
  • [7] I. A. Stringlis, R. De Jonge, and C. M. J. Pieterse, “The Age of Coumarins in Plant–Microbe Interactions,” Plant Cell Physiol., vol. 60, no. 7, pp. 1405–1419, Jul. 2019, doi: 10.1093/pcp/pcz076.
  • [8] V. M. Adimule, S. S. Nandi, S. S. Kerur, S. A. Khadapure, and S. Chinnam, “Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review,” Top. Catal., Jan. 2022, doi: 10.1007/s11244-022-01571-z.
  • [9] A. Gliszczyńska and P. E. Brodelius, “Sesquiterpene coumarins,” Phytochem. Rev., vol. 11, pp. 77–96, Nov. 2011, doi: 10.1007/s11101-011-9220-6.
  • [10] F. Bourgaud et al., “Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes,” Phytochem. Rev., vol. 5, no. 2–3, pp. 293–308, Nov. 2006, doi: 10.1007/s11101-006-9040-2.
  • [11] A. Forycka and W. Buchwald, “Variability of composition of essential oil and coumarin compounds of Angelica archangelica L.,” Herba Pol., vol. 65, no. 4, pp. 62–75, Dec. 2019, doi: 10.2478/hepo-2019-0027.
  • [12] S.-M. Yang, G. Y. Shim, B.-G. Kim, and J.-H. Ahn, “Biological synthesis of coumarins in Escherichia coli,” Microb. Cell Factories, vol. 14, no. 1, p. 65, May 2015, doi: 10.1186/s12934-015-0248-y.
  • [13] J. Wang, S. Huang, C. Li, W. Ding, Z. She, and C. Li, “A New Coumarin Produced by Mixed Fermentation of Two Marine Fungi,” Chem. Nat. Compd., vol. 51, pp. 239–241, Mar. 2015, doi: 10.1007/s10600-015-1252-5.
  • [14] T. Umashankar, M. Govindappa, Y. Ramachandra, C. Chandrappa, S. R. Padmalatha, and R. Channabasava, “Isolation, purification and in vitro cytotoxicity activities of coumarin isolated from endophytic fungi, alternariaspecies of crotalaria pallida,” Indo Am. J. Pharm. Res., vol. 5, no. 2, pp. 926–936, 2015.
  • [15] T.-X. Li et al., “Antioxidant coumarin and pyrone derivatives from the insect-associated fungus Aspergillus Versicolor,” Nat. Prod. Res., vol. 34, no. 10, pp. 1360–1365, Nov. 2020, doi: 10.1080/14786419.2018.1509334.
  • [16] S. P. D. Lira et al., “A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis,” J. Braz. Chem. Soc., vol. 18, no. 2, pp. 440–443, Apr. 2007, doi: 10.1590/S0103-50532007000200030.
  • [17] A. Parikh, H. Parikh, and K. Parikh, “Perkin Reaction,” in Name Reactions in Organic Synthesis, 1st ed., Foundation Books, 2012, pp. 338–341. doi: 10.1017/UPO9788175968295.093.
  • [18] T. Symeonidis, M. Chamilos, D. J. Hadjipavlou-Litina, M. Kallitsakis, and K. E. Litinas, “Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors,” Bioorg. Med. Chem. Lett., vol. 19, no. 4, pp. 1139–1142, Feb. 2009, doi: 10.1016/j.bmcl.2008.12.098.
  • [19] A. Song, X. Wang, and K. S. Lam, “A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones,” Tetrahedron Lett., vol. 44, no. 9, pp. 1755–1758, Feb. 2003, doi: 10.1016/S0040-4039(03)00108-4.
  • [20] S. M. Sethna and N. M. Shah, “The Chemistry of Coumarins.,” Chem. Rev., vol. 36, no. 1, pp. 1–62, Feb. 1945, doi: 10.1021/cr60113a001.
  • [21] G. Rabbani, “A Concise Introduction of Perkin Reaction,” Org. Chem. Curr. Res., vol. 07, no. 02, May 2018, doi: 10.4172/2161-0401.1000191.
  • [22] D. Sharma, V. Dhayalan, C. Manikandan, and R. Dandela, “Recent Methods for Synthesis of Coumarin Derivatives and Their New Applications,” in Strategies for the Synthesis of Heterocycles and Their Applications, P. Kumari and A. B. Patel, Eds., IntechOpen, 2022. doi: 10.5772/intechopen.108563.
  • [23] S. Pakdel, B. Akhlaghinia, and A. Mohammadinezhad, “Fe3O4@Boehmite-NH2-CoII NPs: An Environment Friendly Nanocatalyst for Solvent Free Synthesis of Coumarin Derivatives Through Pechmann Condensation Reaction,” Chem. Afr., vol. 3, no. 2, pp. 367–376, Jan. 2019, doi: 10.1007/s42250-019-00042-5.
  • [24] M. Lončarić, D. Gašo-Sokač, S. Jokić, and M. Molnar, “Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials,” Biomolecules, vol. 10, no. 1, p. 151, Jan. 2020, doi: 10.3390/biom10010151.
  • [25] S. Gulati, R. Singh, and S. Sangwan, “A review on convenient synthesis of substituted coumarins using reuseable solid acid catalysts,” RSC Adv., vol. 11, no. 47, pp. 29130–29155, Sep. 2021, doi: 10.1039/D1RA04887B.
  • [26] A. Y. Mohammed and L. S. Ahamed, “Synthesis and Characterization of New Substituted Coumarin Derivatives and Study Their Biological Activity,” Chem. Methodol., no. Online First, Aug. 2022, doi: 10.22034/CHEMM.2022.349124.1569.
  • [27] Y. Rangraz, S. M. Vadat, and S. Khaksar, “SnO2 nanoparticles: A recyclable and heterogeneous catalyst for Pechmann condensation of coumarins and Knoevenagel condensation-Michael addition of biscoumarins.” Accessed: Jul. 30, 2024. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/37123921/
  • [28] S. S. Vagh, B.-J. Hou, A. Edukondalu, P.-C. Wang, and W. Lin, “Phosphine-Mediated MBH-Type/Acyl Transfer/Wittig Sequence for Construction of Functionalized Furo[3,2-c]coumarins,” Org. Lett., vol. 23, no. 3, pp. 842–846, Jan. 2021, doi: 10.1021/acs.orglett.0c04082.
  • [29] S. Yang et al., “Diversity‐Oriented Synthesis of Furo[3,2‐c]coumarins and Benzofuranyl Chromenones through Chemoselective Acylation/Wittig Reaction,” Angew. Chem., vol. 130, no. 6, pp. 1684–1688, Dec. 2017, doi: 10.1002/ange.201711524.
  • [30] B. Zhao et al., “Reformatsky Reaction Promoted by an Ionic Liquid ([Bmim]Cl) in the Synthesis of β-Hydroxyl Ketone Derivatives Bearing a Coumarin Unit,” J. Chem. Res., vol. 36, no. 7, pp. 393–395, Jul. 2012, doi: 10.3184/174751912X13371652436057.
  • [31] M. Bakthadoss and R. Selvakumar, “One-Pot Synthesis of Benzothiazole-Tethered Chromanones/Coumarins via Claisen Rearrangement Using the Solid State Melt Reaction,” J. Org. Chem., vol. 81, no. 8, pp. 3391–3399, Mar. 2016, doi: 10.1021/acs.joc.5b02920.
  • [32] S. Aoki, C. Amamoto, J. Oyamada, and T. Kitamura, “A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives,” Tetrahedron, vol. 61, no. 39, pp. 9291–9297, Sep. 2005, doi: 10.1016/j.tet.2005.07.062.
  • [33] I. Ansary and A. Taher, “One-Pot Synthesis of Coumarin Derivatives,” in Phytochemicals in Human Health, V. Rao, D. Mans, and L. Rao, Eds., IntechOpen, 2019, p. 298. doi: 10.5772/intechopen.89013.
  • [34] D. Wang et al., “Synthesis of V‐Shaped Bis‐coumarins through Aldol Reaction/Double Lactonization Cascade Reaction from Bis(2‐hydroxyphenyl)methanone and Meldrum’s Acid,” Eur. J. Org. Chem., vol. 2022, no. 13, Mar. 2022, doi: 10.1002/ejoc.202101489.
  • [35] B. M. Trost, F. D. Toste, and K. Greenman, “Atom Economy Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net C−H Insertion,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4518–4526, Mar. 2003, doi: 10.1021/ja0286573.
  • [36] Md. Kutubi, T. Hashimoto, and T. Kitamura, “Improved Synthesis of Coumarins by Iron(III)-Catalyzed Cascade Reaction of Propiolic Acids and Phenols,” Synthesis, vol. 2011, no. 08, pp. 1283–1289, Mar. 2011, doi: 10.1055/s-0030-1258473.
  • [37] K. Park, I. Jung, and Y. Chung, “Synthesis of Coumarins Catalyzed by Heterobimetallic Co/Rh Nanoparticles,” Synlett, vol. 2004, no. 14, pp. 2541–2544, Oct. 2004, doi: 10.1055/s-2004-834826.
  • [38] R. Leão, P. de F. de Moraes, M. Pedro, and P. Costa, “Synthesis of Coumarins and Neoflavones through Zinc Chloride Catalyzed Hydroarylation of Acetylenic Esters with Phenols,” Synthesis, vol. 2011, no. 22, pp. 3692–3696, Oct. 2011, doi: 10.1055/s-0031-1289576.
  • [39] A. Thakur, R. Singla, and V. Jaitak, “Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies,” Eur. J. Med. Chem., vol. 101, pp. 476–495, Aug. 2015, doi: 10.1016/j.ejmech.2015.07.010.
  • [40] V. Sharma et al., “Synthesis, Electrochemical Studies, Molecular Docking, and Biological Evaluation as an Antimicrobial Agent of 5-Amino-6-cyano-3-hydroxybenzo[c]coumarin Using Ni–Cu–Al–CO3 Hydrotalcite as a Catalyst,” ACS Omega, vol. 7, no. 18, pp. 15718–15727, Apr. 2022, doi: 10.1021/acsomega.2c00666.
  • [41] D. U. C. Rahayu et al., “Microwave-Assisted Synthesis Of 4-Methyl Coumarins, Their Antioxidant and Antibacterial Activities,” RASAYAN J. Chem., vol. 15, no. 2, pp. 1053–1062, 2022, doi: 10.31788/RJC.2022.1526780.
  • [42] M. Özdemir, F. Biryan, K. Koran, B. Yalçın, and A. O. Görgülü, “Synthesis, structural characterization, therotical and electrical properties of novel sulpho-coumarin based methacrylate polymer,” J. Polym. Res., vol. 29, no. 190, Apr. 2022, doi: 10.1007/s10965-022-03034-1.
  • [43] R. O. Juvonen, M. Ahinko, J. Huuskonen, H. Raunio, and O. T. Pentikäinen, “Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes,” Xenobiotica, vol. 49, no. 9, pp. 1015–1024, Sep. 2019, doi: 10.1080/00498254.2018.1530399.
  • [44] Ş. N. Karuk Elmas et al., “Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO32- anions in aqueous solution and living cells,” Talanta, vol. 188, pp. 614–622, Oct. 2018, doi: 10.1016/j.talanta.2018.06.036.
  • [45] C. Schultze and B. Schmidt, “Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence,” J. Org. Chem., vol. 83, no. 9, pp. 5210–5224, May 2018, doi: 10.1021/acs.joc.8b00667.
  • [46] C. Schultze and B. Schmidt, “Ring-closing-metathesis-based synthesis of annellated coumarins from 8-allylcoumarins,” Beilstein J. Org. Chem., vol. 14, pp. 2991–2998, Dec. 2018, doi: 10.3762/bjoc.14.278.
  • [47] S. Rauhamäki et al., “Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors,” Front. Chem., vol. 6, no. 41, Mar. 2018, doi: 10.3389/fchem.2018.00041.
  • [48] R. Dharavath et al., “Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles,” RSC Adv., vol. 10, no. 20, pp. 11615–11623, Mar. 2020, doi: 10.1039/D0RA01052A.
  • [49] A. R. Ferreira, D. D. N. Alves, R. D. De Castro, Y. Perez-Castillo, and D. P. De Sousa, “Synthesis of Coumarin and Homoisoflavonoid Derivatives and Analogs: The Search for New Antifungal Agents,” Pharmaceuticals, vol. 15, no. 6, p. 712, Jun. 2022, doi: 10.3390/ph15060712.
  • [50] K. D. Dhawale, A. P. Ingale, M. S. Pansare, S. S. Gaikwad, N. M. Thorat, and L. R. Patil, “Sulfated Tungstate as a Heterogeneous Catalyst for Synthesis of 3-Functionalized Coumarins under Solvent-Free Conditions,” Polycycl. Aromat. Compd., vol. 43, no. 4, pp. 3588–3600, Apr. 2023, doi: 10.1080/10406638.2022.2074477.
  • [51] A. Fais et al., “Coumarin derivatives as promising xanthine oxidase inhibitors,” Int. J. Biol. Macromol., vol. 120(Pt A), pp. 1286–1293, Dec. 2018, doi: 10.1016/j.ijbiomac.2018.09.001.
  • [52] S. Qi et al., “Coumarin/fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 204, pp. 590–597, Nov. 2018, doi: 10.1016/j.saa.2018.06.095.
  • [53] H. M. Mali et al., “Rational design of coumarin derivatives as antituberculosis agents,” Future Med. Chem., vol. 10, no. 20, pp. 2431–2444, Oct. 2018, doi: 10.4155/fmc-2018-0015.
  • [54] O. Ivanova, V. Andronov, I. Levina, A. Chagarovskiy, L. Voskressensky, and I. Trushkov, “Convenient Synthesis of Functionalized Cyclopropa[c]coumarin-1a-carboxylates,” Molecules, vol. 24, no. 1, p. 57, Dec. 2018, doi: 10.3390/molecules24010057.
  • [55] C. S. Wijesooriya, M. Nieszala, A. Stafford, J. R. Zimmerman, and E. A. Smith, “Coumarin‐based Fluorescent Probes for Selectively Targeting and Imaging the Endoplasmic Reticulum in Mammalian Cells,” Photochem. Photobiol., vol. 95, no. 2, pp. 556–562, Mar. 2019, doi: 10.1111/php.12985.
  • [56] M. Shangguan et al., “A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells,” Talanta, vol. 202, pp. 303–307, Sep. 2019, doi: 10.1016/j.talanta.2019.04.074.
  • [57] D. S. Reddy et al., “Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin,” Bioorganic Chem., vol. 92, p. 103212, Nov. 2019, doi: 10.1016/j.bioorg.2019.103212.
  • [58] J. R. Hwu et al., “Chikungunya virus inhibition by synthetic coumarin–guanosine conjugates,” Eur. J. Med. Chem., vol. 166, pp. 136–143, Mar. 2019, doi: 10.1016/j.ejmech.2019.01.037.
  • [59] R. Beninatto et al., “Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications,” Mater. Sci. Eng. C, vol. 96, pp. 625–634, Mar. 2019, doi: 10.1016/j.msec.2018.11.052.
  • [60] K. S. Mani et al., “Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 214, pp. 170–176, May 2019, doi: 10.1016/j.saa.2019.02.020.
  • [61] B. Zhang, L. Xu, Y. Zhou, W. Zhang, Y. Wang, and Y. Zhu, “Synthesis and activity of a coumarin‐based fluorescent probe for hydroxyl radical detection,” Luminescence, vol. 35, no. 2, pp. 305–311, Mar. 2020, doi: 10.1002/bio.3728.
  • [62] W.-L. Lee, T.-W. Hsu, W.-C. Hung, and J.-M. Fang, “A copper(ii)–dipicolylamine–coumarin sensor for maltosyltransferase assay,” Dalton Trans., vol. 48, no. 23, pp. 8026–8029, Jun. 2019, doi: 10.1039/C9DT01339C.
  • [63] F. Rodríguez-Enríquez et al., “Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy,” Bioorganic Chem., vol. 104, p. 104203, Nov. 2020, doi: 10.1016/j.bioorg.2020.104203.
  • [64] S. K. Konidala, V. Kotra, R. C. S. R. Danduga, and P. K. Kola, “Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking,” Bioorganic Chem., vol. 104, p. 104207, Nov. 2020, doi: 10.1016/j.bioorg.2020.104207.
  • [65] D. Iacopini, A. Moscardini, F. Lessi, V. Di Bussolo, S. Di Pietro, and G. Signore, “Coumarin-based fluorescent biosensor with large linear range for ratiometric measurement of intracellular pH,” Bioorganic Chem., vol. 105, p. 104372, Dec. 2020, doi: 10.1016/j.bioorg.2020.104372.
  • [66] M. B. Majnooni, S. Fakhri, Y. Shokoohinia, M. Mojarrab, S. Kazemi-Afrakoti, and M. H. Farzaei, “Isofraxidin: Synthesis, Biosynthesis, Isolation, Pharmacokinetic and Pharmacological Properties,” Molecules, vol. 25, no. 9, p. 2040, Apr. 2020, doi: 10.3390/molecules25092040.
  • [67] A. R. Nesaragi et al., “Green synthesis of therapeutically active 1,3,4-oxadiazoles as antioxidants, selective COX-2 inhibitors and their in silico studies,” Bioorg. Med. Chem. Lett., vol. 43, p. 128112, Jul. 2021, doi: 10.1016/j.bmcl.2021.128112.
  • [68] M. Seydimemet, K. Ablajan, M. Hamdulla, W. Li, A. Omar, and M. Obul, “l -Proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3-c]pyrazoles under ultrasonic irradiation,” Tetrahedron, vol. 72, no. 47, pp. 7599–7605, Nov. 2016, doi: 10.1016/j.tet.2016.10.016.
  • [69] M. R. Bhosle, S. A. Joshi, and G. M. Bondle, “An efficient contemporary multicomponent synthesis for the facile access to coumarin‐fused new thiazolyl chromeno[4,3‐b]quinolones in aqueous micellar medium,” J. Heterocycl. Chem., vol. 57, no. 1, pp. 456–468, Oct. 2019, doi: 10.1002/jhet.3802.
  • [70] G. Brahmachari, M. Mandal, I. Karmakar, K. Nurjamal, and B. Mandal, “Ultrasound-Promoted Expedient and Green Synthesis of Diversely Functionalized 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1H,3H)-diones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions,” ACS Sustain. Chem. Eng., vol. 7, no. 6, pp. 6369–6380, Feb. 2019, doi: 10.1021/acssuschemeng.9b00133.
  • [71] G. Brahmachari, I. Karmakar, and K. Nurjamal, “Ultrasound-Assisted Expedient and Green Synthesis of a New Series of Diversely Functionalized 7-Aryl/heteroarylchromeno[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-ones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions,” ACS Sustain. Chem. Eng., vol. 6, no. 8, pp. 11018–11028, Jun. 2018, doi: 10.1021/acssuschemeng.8b02448.
  • [72] S. Kanchithalaivan, R. V. Sumesh, and R. R. Kumar, “Ultrasound-Assisted Sequential Multicomponent Strategy for the Combinatorial Synthesis of Novel Coumarin Hybrids,” ACS Comb. Sci., vol. 16, no. 10, pp. 566–572, Oct. 2014, doi: 10.1021/co500092b.
  • [73] A. R. Karimi, R. Davood Abadi, and Z. Dalirnasab, “Synthesis of mono- and bis-spiro-2-amino-4H-pyrans catalyzed by S-alkyl O-hydrogen sulfothioate functionalized silica-coated magnetic nanoparticles under ultrasound irradiation,” Res. Chem. Intermed., vol. 41, pp. 7427–7435, Oct. 2014, doi: 10.1007/s11164-014-1834-z.
  • [74] Y. Jain, M. Kumari, R. P. Singh, D. Kumar, and R. Gupta, “Sonochemical Decoration of Graphene Oxide with Magnetic Fe3O4@CuO Nanocomposite for Efficient Click Synthesis of Coumarin-Sugar Based Bioconjugates and Their Cytotoxic Activity,” Catal. Lett., vol. 150, pp. 1142–1154, Oct. 2019, doi: 10.1007/s10562-019-02982-6.
  • [75] M. Feizpour Bonab, S. Soleimani-Amiri, and B. Mirza, “Fe3O4@C@PrS-SO3H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst in the Ultrasound-Assisted Synthesis of Coumarin Derivatives,” Polycycl. Aromat. Compd., vol. 43, no. 2, pp. 1628–1643, Jan. 2022, doi: 10.1080/10406638.2022.2032768.
  • [76] F. Zarei, S. Soleimani-Amiri, and Z. Azizi, “Heterogeneously Catalyzed Pechmann Condensation Employing the HFe(SO 4 ) 2 .4H 2 O-Chitosan Nano-Composite: Ultrasound-Accelerated Green Synthesis of Coumarins,” Polycycl. Aromat. Compd., vol. 42, no. 9, pp. 6072–6089, Sep. 2021, doi: 10.1080/10406638.2021.1973520.
  • [77] S. M. Gomha and K. D. Khalil, “A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity,” Molecules, vol. 17, no. 8, pp. 9335–9347, Aug. 2012, doi: 10.3390/molecules17089335.
  • [78] A. Jain, R. Gupta, and M. Agarwal, “Instantaneous and Selective Bare Eye Detection of Inorganic Fluoride Ion by Coumarin–Pyrazole‐Based Receptors,” J. Heterocycl. Chem., vol. 54, no. 5, pp. 2808–2816, Sep. 2017, doi: 10.1002/jhet.2884.
  • [79] K. Skalicka‐Woźniak and K. Głowniak, “Coumarins: Analytical and Preparative Techniques,” in Handbook of Chemical and Biological Plant Analytical Methods, 1st ed., vol. 3, K. Hostettmann, Ed., UK: John Wiley & Sons Ltd, 2014, pp. 569–594. doi: 10.1002/9780470027318.a9925.
  • [80] D. Egan, R. O’kennedy, E. Moran, D. Cox, E. Prosser, and R. D. Thornes, “The Pharmacology, Metabolism, Analysis, and Applications of Coumarin and Coumarin-Related Compounds,” Drug Metab. Rev., vol. 22, no. 5, pp. 503–529, 1990, doi: 10.3109/03602539008991449.
  • [81] N. Abid-Jarraya, K. Khemakhem, H. Turki-Guermazi, S. Abid, N. Saffon, and S. Fery-Forgues, “Solid-state fluorescence properties of small iminocoumarin derivatives and their analogues in the coumarin series,” Dyes Pigments, vol. 132, pp. 177–184, Apr. 2016, doi: 10.1016/j.dyepig.2016.04.039.
  • [82] A. Cocco et al., “Synthesis and Photophysical Properties of Fluorescent 6-Aryl-D-π-A Coumarin Derivatives,” ACS Omega, vol. 6, no. 49, pp. 33708–33716, Nov. 2021, doi: 10.1021/acsomega.1c04810.
  • [83] N. M. Sarih et al., “Furo[3,2-c]coumarin-derived Fe3+ Selective Fluorescence Sensor: Synthesis, Fluorescence Study and Application to Water Analysis,” Sci. Rep., vol. 10, no. 1, p. 7421, May 2020, doi: 10.1038/s41598-020-63262-7.
  • [84] C. Hua et al., “High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study,” RSC Adv., vol. 6, no. 54, pp. 49221–49227, May 2016, doi: 10.1039/C6RA05996A.
  • [85] F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini, and A. Pinto, “An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities,” Int. J. Mol. Sci., vol. 21, no. 13, Art. no. 13, Jan. 2020, doi: 10.3390/ijms21134618.
  • [86] R. H. Olie, K. Winckers, B. Rocca, and H. ten Cate, “Oral Anticoagulants Beyond Warfarin,” Annu. Rev. Pharmacol. Toxicol., vol. 64, no. 2024, pp. 551–575, Sep. 2023, doi: https://doi.org/10.1146/annurev-pharmtox-032823- 122811.
  • [87] N. C. Bang, A. Z. Abyshev, and D. Yu. Ivkin, “Synthesis and In Vivo Evaluation of New Coumarin Conjugates as Potential Indirect-Action Anticoagulants,” Pharm. Chem. J., vol. 53, no. 5, pp. 419–422, Aug. 2019, doi: 10.1007/s11094-019-02013-z.
  • [88] T. M. Ramsis, M. A. Ebrahim, and E. A. Fayed, “Synthetic coumarin derivatives with anticoagulation and antiplatelet aggregation inhibitory effects,” Med. Chem. Res., vol. 32, no. 11, pp. 2269–2278, Nov. 2023, doi: 10.1007/s00044-023-03148-1.
  • [89] L. Gao, F. Wang, Y. Chen, F. Li, B. Han, and D. Liu, “The antithrombotic activity of natural and synthetic coumarins,” Fitoterapia, vol. 154, p. 104947, Oct. 2021, doi: 10.1016/j.fitote.2021.104947.
  • [90] E. Quezada et al., “Synthesis and Vasorelaxant and Platelet Antiaggregatory Activities of a New Series of 6-Halo-3-phenylcoumarins,” Molecules, vol. 15, no. 1, Art. no. 1, Jan. 2010, doi: 10.3390/molecules15010270.
  • [91] P.-H. Lu et al., “Coumarin Derivatives Inhibit ADP-Induced Platelet Activation and Aggregation,” Molecules, vol. 27, no. 13, p. 4054, Jun. 2022, doi: https://doi.org/10.3390/molecules27134054.
  • [92] Ii. Mazreku, I. Rudhani, L. Lajqi, M. H. Ibrahimi, and A. Haziri, “Some Experimental Studies on the Anticoagulant Activity of the Synthetic Coumarin Derivatives,” Jordan J. Biol. Sci., vol. 15, no. 04, pp. 643–647, Dec. 2022, doi: 10.54319/jjbs/150413.
  • [93] M. Hrubša et al., “Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs,” Med. Chem. Shariqah United Arab Emir., vol. 18, no. 5, pp. 536–543, 2022, doi: 10.2174/1573406417666211026150658.
  • [94] E. Berrino et al., “A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration,” Antioxidants, vol. 12, no. 12, Art. no. 12, Dec. 2023, doi: 10.3390/antiox12122044.
  • [95] Q. Zhang et al., “Natural source, bioactivity and synthesis of 3-Arylcoumarin derivatives,” J. Enzyme Inhib. Med. Chem., vol. 37, no. 1, pp. 1023–1042, Dec. 2022, doi: 10.1080/14756366.2022.2058499.
  • [96] E. H. M. Hassanein, A. M. Sayed, O. E. Hussein, and A. M. Mahmoud, “Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway,” Oxid. Med. Cell. Longev., vol. 2020, no. 1, p. 1675957, Apr. 2020, doi: https://doi.org/10.1155/2020/1675957.
  • [97] Q. Chu et al., “Studies on the Neuroprotection of Osthole on Glutamate-Induced Apoptotic Cells and an Alzheimer’s Disease Mouse Model via Modulation Oxidative Stress,” Appl. Biochem. Biotechnol., vol. 190, no. 2, pp. 634–644, Feb. 2020, doi: 10.1007/s12010-019-03101-2.
  • [98] N. K. Kordulewska et al., “Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages,” Nutrients, vol. 13, no. 1, p. 123, Dec. 2020, doi: 10.3390/nu13010123.
  • [99] M. O. Hindam, R. H. Sayed, K. Skalicka-Woźniak, B. Budzyńska, and N. S. E. Sayed, “Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer’s disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation,” Phytother. Res., vol. 34, no. 9, 2020, doi: 10.1002/ptr.6686.
  • [100] D. Stasi and L. C, “Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs,” Pharmaceuticals, vol. 16, no. 4, Art. no. 4, Apr. 2023, doi: 10.3390/ph16040511.
  • [101] M. Abomosallam, B. M. Hendam, A. A. Abdallah, R. Refaat, and H. N. G. EL-Hak, “Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway,” Inflammopharmacology, vol. 32, no. 3, pp. 1903–1928, Jun. 2024, doi: 10.1007/s10787-024-01461-8.
  • [102] F. Villavicencio Tejo and R. A. Quintanilla, “Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer’s Disease,” Antioxidants, vol. 10, no. 7, Art. no. 7, Jul. 2021, doi: 10.3390/antiox10071069.
  • [103] A. Benazzouz-Touami et al., “New Coumarin-Pyrazole hybrids: Synthesis, Docking studies and Biological evaluation as potential cholinesterase inhibitors,” J. Mol. Struct., vol. 1249, p. 131591, Feb. 2022, doi: 10.1016/j.molstruc.2021.131591.
  • [104] Y.-H. Hu et al., “Synthesis and biological evaluation of 3–(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents,” J. Enzyme Inhib. Med. Chem., vol. 34, no. 1, pp. 1083–1092, Jan. 2019, doi: 10.1080/14756366.2019.1615484.
  • [105] M. Huang, S.-S. Xie, N. Jiang, J.-S. Lan, L.-Y. Kong, and X.-B. Wang, “Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease,” Bioorg. Med. Chem. Lett., vol. 25, no. 3, pp. 508–513, Feb. 2015, doi: 10.1016/j.bmcl.2014.12.034.
  • [106] Y.-J. Chiu et al., “Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2H-Chromen-2-One Activates CREB-Mediated Neuroprotection in Aβ and Tau Cell Models of Alzheimer’s Disease,” Oxid. Med. Cell. Longev., vol. 2021, no. 1, p. 3058861, 2021, doi: 10.1155/2021/3058861.
  • [107] E. Babaei et al., “Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease,” Front. Chem., vol. 10, Jun. 2022, doi: 10.3389/fchem.2022.895483.
  • [108] M. F. Urmeneta-Ortíz, A. R. Tejeda-Martínez, O. González-Reynoso, and M. E. Flores-Soto, “Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson’s Disease,” Park. Dis., vol. 2024, no. 1, p. 5519396, 2024, doi: 10.1155/2024/5519396.
  • [109] E. Bester, A. Petzer, and J. P. Petzer, “Coumarin derivatives as inhibitors of d-amino acid oxidase and monoamine oxidase,” Bioorganic Chem., vol. 123, p. 105791, Jun. 2022, doi: 10.1016/j.bioorg.2022.105791.
  • [110] A. K. El-Damasy et al., “Novel coumarin benzamides as potent and reversible monoamine oxidase-B inhibitors: Design, synthesis, and neuroprotective effects,” Bioorganic Chem., vol. 142, p. 106939, Jan. 2024, doi: 10.1016/j.bioorg.2023.106939.
  • [111] K. V. Sashidhara et al., “Discovery of 3-Arylcoumarin-tetracyclic Tacrine Hybrids as Multifunctional Agents against Parkinson’s Disease,” ACS Med. Chem. Lett., vol. 5, no. 10, pp. 1099–1103, Oct. 2014, doi: 10.1021/ml500222g.
  • [112] S. N. K. Kumar et al., “Scopoletin Augments DJ1/Nrf2 Signalling and Prevents Protein Aggregation in Parkinson’s disease,” Feb. 05, 2018, bioRxiv. doi: 10.1101/260521.
  • [113] D. Tao et al., “Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease,” Eur. J. Med. Chem., vol. 173, pp. 203–212, Jul. 2019, doi: 10.1016/j.ejmech.2019.04.016.
  • [114] S. Ham et al., “Therapeutic Evaluation of Synthetic Peucedanocoumarin III in an Animal Model of Parkinson’s Disease,” Int. J. Mol. Sci., vol. 20, no. 21, Art. no. 21, Jan. 2019, doi: 10.3390/ijms20215481.
  • [115] Md. A. Hannan et al., “Protective Mechanisms of Nootropic Herb Shankhpushpi (Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach,” Evid. Based Complement. Alternat. Med., vol. 2022, no. 1, p. 1015310, 2022, doi: 10.1155/2022/1015310.
  • [116] P. Pradhan, O. Majhi, A. Biswas, V. K. Joshi, and D. Sinha, “Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson’s model,” Cell Death Dis., vol. 11, no. 9, pp. 1–11, Sep. 2020, doi: 10.1038/s41419-020-02942-8.
  • [117] A. S. Sayed, N. S. El Sayed, B. Budzyńska, K. Skalicka-Woźniak, M. K. Ahmed, and E. A. Kandil, “Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson’s disease model,” Life Sci., vol. 310, p. 121129, Dec. 2022, doi: 10.1016/j.lfs.2022.121129.
  • [118] A. Rawat and A. V. B. Reddy, “Recent advances on anticancer activity of coumarin derivatives,” Eur. J. Med. Chem. Rep., vol. 5, p. 100038, Aug. 2022, doi: 10.1016/j.ejmcr.2022.100038.
  • [119] A. K. Yadav, R. Maharjan Shrestha, and P. N. Yadav, “Anticancer mechanism of coumarin-based derivatives,” Eur. J. Med. Chem., vol. 267, p. 116179, Mar. 2024, doi: 10.1016/j.ejmech.2024.116179.
  • [120] F.-Q. Shen et al., “Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX,” Bioorg. Med. Chem. Lett., vol. 27, no. 16, pp. 3653–3660, Aug. 2017, doi: 10.1016/j.bmcl.2017.07.020.
  • [121] T. K. Mohamed, R. Z. Batran, S. A. Elseginy, M. M. Ali, and A. E. Mahmoud, “Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis,” Bioorganic Chem., vol. 85, pp. 253–273, Apr. 2019, doi: 10.1016/j.bioorg.2018.12.040.
  • [122] S. D. Durgapal and S. S. Soman, “Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents,” Synth. Commun., vol. 49, no. 21, pp. 2869–2883, Nov. 2019, doi: 10.1080/00397911.2019.1647439.
  • [123] Y. Wang, W. Zhang, J. Dong, and J. Gao, “Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents,” Bioorganic Chem., vol. 95, p. 103530, Jan. 2020, doi: 10.1016/j.bioorg.2019.103530.
  • [124] F. Hersi et al., “Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins,” Sci. Rep., vol. 10, no. 1, p. 2893, Feb. 2020, doi: 10.1038/s41598-020-59685-x.
  • [125] E. Y. Ahmed, N. A. Abdel Latif, M. F. El-Mansy, W. S. Elserwy, and O. M. Abdelhafez, “VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents,” Bioorg. Med. Chem., vol. 28, no. 5, p. 115328, Mar. 2020, doi: 10.1016/j.bmc.2020.115328.
  • [126] G. Achar, R. V. C., U. K., and S. Budagumpi, “Coumarin‐tethered (benz)imidazolium salts and their silver(I) N‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure and antibacterial studies,” Appl. Organomet. Chem., vol. 31, no. 11, p. e3770, Mar. 2017, doi: 10.1002/aoc.3770.
  • [127] R. R. Chavan and K. M. Hosamani, “Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid,” R. Soc. Open Sci., vol. 5, May 2018, doi: 10.1098/rsos.172435.
  • [128] J. Pozo-Martínez et al., “Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole,” Arab. J. Chem., vol. 15, no. 3, p. 103641, Mar. 2022, doi: 10.1016/j.arabjc.2021.103641.
  • [129] Y. Hu, B. Wang, J. Yang, T. Liu, J. Sun, and X. Wang, “Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents,” J. Enzyme Inhib. Med. Chem., vol. 34, no. 1, pp. 15–30, Dec. 2019, doi: 10.1080/14756366.2018.1518958.
  • [130] N. George, B. A. Sabahi, M. AbuKhader, K. A. Balushi, Md. J. Akhtar, and S. A. Khan, “Design, synthesis and in vitro biological activities of coumarin linked 1,3,4-oxadiazole hybrids as potential multi-target directed anti-Alzheimer agents,” J. King Saud Univ. - Sci., vol. 34, no. 4, Jun. 2022, doi: 10.1016/j.jksus.2022.101977.
  • [131] A. R. Bhat, “Biological Activity of Pyrimidine Derivativies: A Review,” Org. Med. Chem., vol. 2, no. 2, p. 555581, Apr. 2017, doi: DOI:10.19080/omcij.2017.02.555581.
  • [132] A. Srivastava, V. Mishra, P. Singh, and R. Kumar, “Coumarin‐based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications,” J. Appl. Polym. Sci., vol. 126, no. 2, pp. 395–407, Apr. 2012, doi: 10.1002/app.36999.
  • [133] Z. Nofal, M. El-Zahar, and S. Abd El-Karim, “Novel Coumarin Derivatives with Expected Biological Activity,” Molecules, vol. 5, no. 2, pp. 99–113, Feb. 2000, doi: 10.3390/50200099.
  • [134] A. A. Emmanuel‐Giota, K. C. Fylaktakidou, K. E. Litinas, D. N. Nicolaides, and D. J. Hadjipavlou‐Litina, “Synthesis and biological evaluation of several 3‐(coumarin‐4‐yl)tetrahydroisoxazole and 3‐(coumarin‐4‐yl)dihydropyrazole derivatives,” J. Heterocycl. Chem., vol. 38, no. 3, pp. 717–722, Mar. 2001, doi: 10.1002/jhet.5570380329.
  • [135] R. M. Shaker, “Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities,” Pharmazie, vol. 51, no. 3, pp. 148–151, Mar. 1996.
  • [136] T. Patonay, G. Litkei, R. Bognár, J. Erdei, and C. Miszti, “Synthesis, antibacterial and antifungal activity of 4-hydroxycoumarin derivatives, analogues of novobiocin,” Pharmazie, vol. 39, no. 2, pp. 84–91, Feb. 1984.
  • [137] M. Erşatır and E. S. Giray, “Synthesis of Various Chalcone-Coumarin Hybrid Compounds,” Çukurova Univ. Grad. Sch. Nat. Appl. Sci., vol. 35, no. 6, pp. 111–120, 2018.
  • [138] M. Asif, “Overview of Diverse Pharmacological Activities of Substituted Coumarins: Compounds with Therapeutic Potentials,” Med. Chem., Jan. 2015, [Online]. Available: https://api.semanticscholar.org/CorpusID:94501826}
  • [139] X. Zhou, M. Li, X.-B. Wang, T. Wang, and L.-Y. Kong, “Synthesis of Benzofuran Derivatives via Rearrangement and Their Inhibitory Activity on Acetylcholinesterase,” Molecules, vol. 15, no. 12, pp. 8593–601, Nov. 2010, doi: 10.3390/molecules15128593.
  • [140] A. M. Saleh, M. M. Y. Madany, and L. González, “The Effect of Coumarin Application on Early Growth and Some Physiological Parameters in Faba Bean (Vicia faba L.),” J. Plant Growth Regul., vol. 34, no. 2, pp. 233–241, Nov. 2014, doi: 10.1007/s00344-014-9459-4.
  • [141] N. V. Soucy, “Acetophenone,” in Encyclopedia of Toxicology, Academic Press: Elsevier, 2014, pp. 43–45. doi: 10.1016/B978-0-12-386454-3.01157-X.
  • [142] K. Robe, E. Izquierdo, F. Vignols, H. Rouached, and C. Dubos, “The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health,” Trends Plant Sci., vol. 26, no. 3, pp. 248–259, Mar. 2021, doi: 10.1016/j.tplants.2020.10.008.
  • [143] S. Malla, M. A. G. Koffas, R. J. Kazlauskas, and B.-G. Kim, “Production of 7-O-Methyl Aromadendrin, a Medicinally Valuable Flavonoid, in Escherichia coli,” Appl. Environ. Microbiol., vol. 78, no. 3, pp. 684–694, Feb. 2012, doi: 10.1128/AEM.06274-11.
  • [144] K. Kai, B. Shimizu, M. Mizutani, K. Watanabe, and K. Sakata, “Accumulation of coumarins in Arabidopsis thaliana,” Phytochemistry, vol. 67, no. 4, pp. 379–386, Feb. 2006, doi: 10.1016/j.phytochem.2005.11.006.
  • [145] K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity,” BioMed Res. Int., vol. 2013, no. 963248, pp. 1–14, Mar. 2013, doi: 10.1155/2013/963248.
  • [146] A. Stefanachi, F. Leonetti, L. Pisani, M. Catto, and A. Carotti, “Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds,” Molecules, vol. 23, no. 2, p. 250, Jan. 2018, doi: 10.3390/molecules23020250.
Toplam 145 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kataliz ve Reaksiyon Mekanizmaları
Bölüm Makaleler
Yazarlar

Safa Elmusa 0000-0003-3078-4822

Muna Elmusa 0000-0003-4087-4944

Benan Elmusa 0000-0002-1722-2561

Rahmi Kasımoğulları 0000-0001-6391-7121

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 17 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Elmusa, S., Elmusa, M., Elmusa, B., Kasımoğulları, R. (2025). Coumarins: Chemical Synthesis, Properties and Applications. Duzce University Journal of Science and Technology, 13(1), 131-170. https://doi.org/10.29130/dubited.1441144
AMA Elmusa S, Elmusa M, Elmusa B, Kasımoğulları R. Coumarins: Chemical Synthesis, Properties and Applications. DÜBİTED. Ocak 2025;13(1):131-170. doi:10.29130/dubited.1441144
Chicago Elmusa, Safa, Muna Elmusa, Benan Elmusa, ve Rahmi Kasımoğulları. “Coumarins: Chemical Synthesis, Properties and Applications”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 131-70. https://doi.org/10.29130/dubited.1441144.
EndNote Elmusa S, Elmusa M, Elmusa B, Kasımoğulları R (01 Ocak 2025) Coumarins: Chemical Synthesis, Properties and Applications. Duzce University Journal of Science and Technology 13 1 131–170.
IEEE S. Elmusa, M. Elmusa, B. Elmusa, ve R. Kasımoğulları, “Coumarins: Chemical Synthesis, Properties and Applications”, DÜBİTED, c. 13, sy. 1, ss. 131–170, 2025, doi: 10.29130/dubited.1441144.
ISNAD Elmusa, Safa vd. “Coumarins: Chemical Synthesis, Properties and Applications”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 131-170. https://doi.org/10.29130/dubited.1441144.
JAMA Elmusa S, Elmusa M, Elmusa B, Kasımoğulları R. Coumarins: Chemical Synthesis, Properties and Applications. DÜBİTED. 2025;13:131–170.
MLA Elmusa, Safa vd. “Coumarins: Chemical Synthesis, Properties and Applications”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 131-70, doi:10.29130/dubited.1441144.
Vancouver Elmusa S, Elmusa M, Elmusa B, Kasımoğulları R. Coumarins: Chemical Synthesis, Properties and Applications. DÜBİTED. 2025;13(1):131-70.