Araştırma Makalesi
BibTex RIS Kaynak Göster

Van der Pol Osilatörü, Yitimli Kanonik Denklemler Kullanarak Kontrol Teorik Analizi ve Lyapunov Fonksiyonu

Yıl 2025, Cilt: 13 Sayı: 1, 479 - 489, 30.01.2025
https://doi.org/10.29130/dubited.1448747

Öz

Bu araştırma makalesinde, bir fiziksel/mühendislik sisteminin Lagrangian ve genelleştirilmiş hız orantılı (Rayleigh) yitim fonksiyonu ile başlayarak, öncelikle bu sistemin Lagrange-dissipatif modeli (kısaca {L,D}-modeli) oluşturulmuştur. Legendre dönüşümü için gerekli koşulunun sağlanmasıyla Hamilton fonksiyonu elde edilebilir. Hamilton fonksiyonu ve genelleştirilmiş hız orantılı (Rayleigh) yitim fonksiyonuyla, yitimli kanonik denklemler elde edilebilir. Yitimli kanonik denklemlerin sistemin durum uzayı denklemleri olarak kullanılması; gözlemlenebilirlik, kontrol edilebilirlik ve kararlılık özelliklerinin araştırılması için kullanılır. Sistemin denge (veya kritik veya sabit) noktalarının yanı sıra, sistemin kararlılık özellikleri, artık enerji fonksiyonu (REF) olarak bir Lyapunov fonksiyonu aracılığıyla da doğrulanabilir. Önerilen yöntem doğrusal ve doğrusal olmayan sistemler için de geçerli olduğundan, yöntem Van der Pol osilatörüne/denklemine uygulanmıştır.

Kaynakça

  • [1] Van der Pol, B., "A theory of the amplitude of free and forced triode vibrations,” Radio Review (later Wireless World), 1, pp. 701–710, 1920.
  • [2] Van der Pol, B., “Relaxation-oscillations,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11, pp. 978–992, 1926.
  • [3] Van der Pol, B., Van Der Mark, J., "Frequency demultiplicationi" Nature 120.3019,pp. 363-364, 1927.
  • [4] Cartwbight, M. L., “Balthazar van der Pol,” Journal of the London Mathematical Society, s1-35 (3): 367–376, 1989.
  • [5] Guckenheimer, J., Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Book Archive-Mathematics, 1997.
  • [6] Thompson, J. M. T., Stewart, H. B., Nonlinear Dynamics and Chaos, John Wiley, 2002.
  • [7] Ott, E., Chaos in dynamical systems, Cambridge university press, 2002.
  • [8] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Springer, 2003.
  • [9] Cartwright, J.H.E., Eguíluz V.M., Hernández-García E., Piro O.,” Dynamics of Elastic Excitable Media,” International Journal of Bifurcation and Chaos, 9.11:2197–2202, 1999.
  • [10] Arnold, V. I., Mathematical methods of classical mechanics,Graduate texts in mathematics, Springer,1989.
  • [11] Goldstein, H., Classical Mechanics, Addision-Wesley, pp. 11-16, 1980.
  • [12] Heil, M., Kitzka, F., Grundkurs Theoretische Mechanik, 1984.
  • [13] Suesse, R., Civelek, C., "Analysis of engineering systems by means of Lagrange and Hamilton formalisms depending on contravariant, covariant tensorial variables," Forschung im Ingenieurwesen-Engineering Research, 68, pp. 63-74, 2003.
  • [14] Suesse, R., Civelek, C., "Analysis of coupled dissipative dynamic systems of engineering using extended Hamiltonian for classical and nonconservative Hamiltonian H∗ n for higher order Lagrangian systems," Forschung im Ingenieurwesen 77.1-2, pp. 1-11, 2013.
  • [15] Civelek, C.,“Stability analysis of engineering/physical dynamic systems using residual energy function,” Archives of Control Sciences, 2018.
  • [16] Huijberts, H., Nijmeijer, H., Controllability and observability of nonlinear systems."Control Systems, Robotics, and Automation, by Unbehauen, H. - Vol. XII –Encyclopedia of Life Support Systems, Eolss Publishers, Oxford, 2009.
  • [17] Hedrick, J.K., Girard, A. (2015, December 23). Control of Nonlinear Dynamic Systems, [Online]. Available: https://www.researchgate.net/publication/290128700_Control_of_nonlinear_dynamic_systems_theoryand_applications
  • [ 18] Civelek, C., Suesse, R., "Physical system analysis related to observability, controllability and stability using its equations of generalized motion and canonical equations both in dissipative forms," Journal of the Brazilian Society of Mechanical Sciences and Engineering 44.7, pp.302, 2022.
  • [19] Civelek, C., "Observability, controllability and stability of a nonlinear RLC circuit in form of a Duffing oscillator by means of theoretical mechanical approach," Journal of Electrical Engineering 73.2, pp. 140-145, 2022.

Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function

Yıl 2025, Cilt: 13 Sayı: 1, 479 - 489, 30.01.2025
https://doi.org/10.29130/dubited.1448747

Öz

In this research paper, beginning with the Lagrangian and generalized velocity proportional (Rayleigh) dissipation function of a physical/engineering system, the Lagrange-dissipative model ( {L,D}-model briefly) of the system is initially developed. Upon satisfying the prerequisite condition for a Legendre transform, the Hamiltonian function can be obtained. With the Hamiltonian function and the generalized velocity proportional (Rayleigh) dissipation function, dissipative canonical equations can be derived. Using these dissipative canonical equations as the state-space equations of the system allows for the investigation of observability, controllability, and stability properties. In addition to the equilibrium (or critical or fixed) points of the system, stability properties can also be verified through a Lyapunov function as a residual energy function (REF). Since the proposed method is valid for both linear and nonlinear systems, it has been applied to the Van der Pol oscillator/equation.

Kaynakça

  • [1] Van der Pol, B., "A theory of the amplitude of free and forced triode vibrations,” Radio Review (later Wireless World), 1, pp. 701–710, 1920.
  • [2] Van der Pol, B., “Relaxation-oscillations,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11, pp. 978–992, 1926.
  • [3] Van der Pol, B., Van Der Mark, J., "Frequency demultiplicationi" Nature 120.3019,pp. 363-364, 1927.
  • [4] Cartwbight, M. L., “Balthazar van der Pol,” Journal of the London Mathematical Society, s1-35 (3): 367–376, 1989.
  • [5] Guckenheimer, J., Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Book Archive-Mathematics, 1997.
  • [6] Thompson, J. M. T., Stewart, H. B., Nonlinear Dynamics and Chaos, John Wiley, 2002.
  • [7] Ott, E., Chaos in dynamical systems, Cambridge university press, 2002.
  • [8] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Springer, 2003.
  • [9] Cartwright, J.H.E., Eguíluz V.M., Hernández-García E., Piro O.,” Dynamics of Elastic Excitable Media,” International Journal of Bifurcation and Chaos, 9.11:2197–2202, 1999.
  • [10] Arnold, V. I., Mathematical methods of classical mechanics,Graduate texts in mathematics, Springer,1989.
  • [11] Goldstein, H., Classical Mechanics, Addision-Wesley, pp. 11-16, 1980.
  • [12] Heil, M., Kitzka, F., Grundkurs Theoretische Mechanik, 1984.
  • [13] Suesse, R., Civelek, C., "Analysis of engineering systems by means of Lagrange and Hamilton formalisms depending on contravariant, covariant tensorial variables," Forschung im Ingenieurwesen-Engineering Research, 68, pp. 63-74, 2003.
  • [14] Suesse, R., Civelek, C., "Analysis of coupled dissipative dynamic systems of engineering using extended Hamiltonian for classical and nonconservative Hamiltonian H∗ n for higher order Lagrangian systems," Forschung im Ingenieurwesen 77.1-2, pp. 1-11, 2013.
  • [15] Civelek, C.,“Stability analysis of engineering/physical dynamic systems using residual energy function,” Archives of Control Sciences, 2018.
  • [16] Huijberts, H., Nijmeijer, H., Controllability and observability of nonlinear systems."Control Systems, Robotics, and Automation, by Unbehauen, H. - Vol. XII –Encyclopedia of Life Support Systems, Eolss Publishers, Oxford, 2009.
  • [17] Hedrick, J.K., Girard, A. (2015, December 23). Control of Nonlinear Dynamic Systems, [Online]. Available: https://www.researchgate.net/publication/290128700_Control_of_nonlinear_dynamic_systems_theoryand_applications
  • [ 18] Civelek, C., Suesse, R., "Physical system analysis related to observability, controllability and stability using its equations of generalized motion and canonical equations both in dissipative forms," Journal of the Brazilian Society of Mechanical Sciences and Engineering 44.7, pp.302, 2022.
  • [19] Civelek, C., "Observability, controllability and stability of a nonlinear RLC circuit in form of a Duffing oscillator by means of theoretical mechanical approach," Journal of Electrical Engineering 73.2, pp. 140-145, 2022.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler
Bölüm Makaleler
Yazarlar

Cem Civelek 0000-0003-0017-8661

Bedri Sevinc 0000-0002-7796-5447

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 8 Mart 2024
Kabul Tarihi 15 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Civelek, C., & Sevinc, B. (2025). Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function. Duzce University Journal of Science and Technology, 13(1), 479-489. https://doi.org/10.29130/dubited.1448747
AMA Civelek C, Sevinc B. Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function. DÜBİTED. Ocak 2025;13(1):479-489. doi:10.29130/dubited.1448747
Chicago Civelek, Cem, ve Bedri Sevinc. “Van Der Pol Oscillator, Its Control Theoretical Analysis Using Dissipative Canonical Equations and Its Lyapunov Function”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 479-89. https://doi.org/10.29130/dubited.1448747.
EndNote Civelek C, Sevinc B (01 Ocak 2025) Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function. Duzce University Journal of Science and Technology 13 1 479–489.
IEEE C. Civelek ve B. Sevinc, “Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function”, DÜBİTED, c. 13, sy. 1, ss. 479–489, 2025, doi: 10.29130/dubited.1448747.
ISNAD Civelek, Cem - Sevinc, Bedri. “Van Der Pol Oscillator, Its Control Theoretical Analysis Using Dissipative Canonical Equations and Its Lyapunov Function”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 479-489. https://doi.org/10.29130/dubited.1448747.
JAMA Civelek C, Sevinc B. Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function. DÜBİTED. 2025;13:479–489.
MLA Civelek, Cem ve Bedri Sevinc. “Van Der Pol Oscillator, Its Control Theoretical Analysis Using Dissipative Canonical Equations and Its Lyapunov Function”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 479-8, doi:10.29130/dubited.1448747.
Vancouver Civelek C, Sevinc B. Van der Pol Oscillator, its Control Theoretical Analysis Using Dissipative Canonical Equations and its Lyapunov Function. DÜBİTED. 2025;13(1):479-8.