Araştırma Makalesi
BibTex RIS Kaynak Göster

Luffa Takviyeli Polianilin Filmlerin Karakterizasyonu

Yıl 2025, Cilt: 13 Sayı: 1, 26 - 36, 30.01.2025
https://doi.org/10.29130/dubited.1469198

Öz

Burada, emeraldin bazlı polianilin ve lif kabağından ekstrakte edilen selülozun döküm çözeltisi kullanılarak çeşitli kütle fraksiyonlarına (%) polianilin (PANİ)/polietilen oksit (PEO) - lif kabağı cylindrica biyo-kompozit filmler hazırlanmıştır. Biyopolimer filmler, X-ışını kırınımı (XRD), Fournier Dönüşüm-Kızılötesi (FT-IR) spektroskopisi ve diferansiyel taramalı kalorimetri analizi (DSC) kullanılarak yapısal ve termal olarak karakterize edilmiştir. Ayrıca, iletkenlik ölçer kullanılarak iletken biyopolimer çözeltilerinin elektriksel özellikleri ölçülmüştür. Elde edilen sonuçlara göre, işlenmiş lif kabağı biyopolimerlerin iletkenliğini artırmaktadır. XRD sonuçları, lif kabağının PANI/PEO filmlerine kıyasla biyo-kompozit filmlerin kristalliğini artırdığını ortaya koymaktadır. FTIR analizi, film yapısında PANI, PEO ve lif kabağı fonksiyonel gruplarının varlığını kanıtlamıştır. Ayrıca, biyo-kompozit ince filmdeki lif kabağı ağırlığındaki artış, O-H grubunun pik yoğunluklarında artışa neden olur. Lif kabağının DSC analizinin sonuçlarına göre kompozitlerin termal kararlılığını artırdığı belirlenmiştir.

Kaynakça

  • [1] S. K. Ramamoorthy, M. Skrifvars, and A. Persson, ‘A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers’, Polym. Rev., vol. 55, no. 1, pp. 107–162, Jan. 2015, doi: 10.1080/15583724.2014.971124.
  • [2] I. L. Kalnin, ‘Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli’, US3691000A, Sep. 12, 1972 Accessed: Jun. 20, 2023. [Online]. Available: https://patents.google.com/patent/US3691000A/en
  • [3] O. Akampumuza, Paul. M. Wambua, A. Ahmed, W. Li, and X.-H. Qin, ‘Review of the applications of biocomposites in the automotive industry’, Polym. Compos., vol. 38, no. 11, pp. 2553–2569, 2017, doi: 10.1002/pc.23847.
  • [4] P. Balakrishnan, M. John, L. Pothan, M. S. Sreekala, and S. Thomas, ‘Natural fibre and polymer matrix composites and their applications in aerospace engineering’, 2016, pp. 365–383. doi: 10.1016/B978-0-08-100037-3.00012-2.
  • [5] M. P. Ansell, ‘14 - Natural fibre composites in a marine environment’, in Natural Fibre Composites, A. Hodzic and R. Shanks, Eds., Woodhead Publishing, 2014, pp. 365–374. doi: 10.1533/9780857099228.3.365.
  • [6] D. U. Shah, D. Porter, and F. Vollrath, ‘Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour’, Compos. Part Appl. Sci. Manuf., vol. 62, pp. 1–10, Jul. 2014, doi: 10.1016/j.compositesa.2014.03.008.
  • [7] G. Genc, A. Sarikas, U. Kesen, and S. Aydin, ‘Luffa/Epoxy Composites: Electrical Properties for PCB Application’, IEEE Trans. Compon. Packag. Manuf. Technol., vol. 10, no. 6, pp. 933–940, Jun. 2020, doi: 10.1109/TCPMT.2020.2988456.
  • [8] M. Sahli, S. Rudz, K. Chetehouna, R. Bensaha, and M. Korichi, ‘Development, characterization and photocatalytic study of biocomposites based on PTFE, TiO2 and luffa cylindrica fibers’, Mater. Chem. Phys., p. 127635, 2023, doi: 10.1016/j.matchemphys.2023.127635.
  • [9] G. K. Ege, H. Yuce, O. Akay, H. Oner, and G. Genc, ‘A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning’, Pigment Resin Technol., vol. 52, no. 1, pp. 151–159, Jan. 2023, doi: 10.1108/PRT-09-2021-0105.
  • [10] O. Akay, C. Altinkok, G. Acik, H. Yuce, G. K. Ege, and G. Genc, ‘Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(ɛ-caprolactone) for bioplastic applications’, Int. J. Biol. Macromol., vol. 196, no. October 2021, pp. 98–106, 2022, doi: 10.1016/j.ijbiomac.2021.12.051.
  • [11] B. V. Porras, ‘Characterization of Poly-hydroxybutyrate / Luffa Fibers Composite Material’, no. July, 2020.
  • [12] G. Konuk Ege, Ö. Akay, and H. Yüce, ‘A chemosensitive based ammonia gas sensor with PANI/PEO- ZnO nanofiber composites sensing layer’, Microelectron. Int., Mar. 2023, doi: 10.1108/MI-09-2022-0161.
  • [13] P. P. Sengupta, S. Barik, and B. Adhikari, ‘Polyaniline as a Gas-Sensor Material’, Mater. Manuf. Process., vol. 21, no. 3, pp. 263–270, May 2006, doi: 10.1080/10426910500464602.
  • [14] F.-W. Zeng, X.-X. Liu, D. Diamond, and K. T. Lau, ‘Humidity sensors based on polyaniline nanofibres’, Sens. Actuators B Chem., vol. 143, no. 2, pp. 530–534, Jan. 2010, doi: 10.1016/j.snb.2009.09.050.
  • [15] E. N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, and G. Perale, ‘Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review’, J. Med. Chem., vol. 63, no. 1, pp. 1–22, Jan. 2020, doi: 10.1021/acs.jmedchem.9b00803.
  • [16] C. Bavatharani et al., ‘Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review’, Synth. Met., vol. 271, p. 116609, Jan. 2021, doi: 10.1016/j.synthmet.2020.116609.
  • [17] N. Z. Al-Hazeem and N. M. Ahmed, ‘Effect of Addition of Polyaniline on Polyethylene Oxide and Polyvinyl Alcohol for the Fabrication of Nanorods’, ACS Omega, vol. 5, no. 35, pp. 22389–22394, Sep. 2020, doi: 10.1021/acsomega.0c02802.
  • [18] M. Yazid, S. A. Ghani, S. J. Tan, A. F. Osman, and S. Hajar, ‘Utilization of Polyaniline (PAni) as Conductive Filler on Poly (Ethylene Oxide) / Poly (Vinyl Chloride) Films: Effects of Naphthalene as Surface Modifier on Electrical Conductivity’, J. Phys. Conf. Ser., vol. 908, p. 012006, Oct. 2017, doi: 10.1088/1742-6596/908/1/012006.
  • [19] M. S. Thompson, T. P. Vadala, M. L. Vadala, Y. Lin, and J. S. Riffle, ‘Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers’, Polymer, vol. 49, no. 2, pp. 345–373, Jan. 2008, doi: 10.1016/j.polymer.2007.10.029.
  • [20] D. B. Hall, P. Underhill, and J. M. Torkelson, ‘Spin coating of thin and ultrathin polymer films’, Polym. Eng. Sci., vol. 38, no. 12, pp. 2039–2045, 1998, doi: 10.1002/pen.10373.
  • [21] D. Dastan, S. L. Panahi, and N. B. Chaure, ‘Characterization of titania thin films grown by dip-coating technique’, J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12291–12296, Dec. 2016, doi: 10.1007/s10854-016-4985-4.
  • [22] U. Siemann, ‘Solvent cast technology – a versatile tool for thin film production’, in Scattering Methods and the Properties of Polymer Materials, N. Stribeck and B. Smarsly, Eds., Berlin, Heidelberg: Springer, 2005, pp. 1–14. doi: 10.1007/b107336.
  • [23] S. Zhong et al., ‘Recent progress in thin separators for upgraded lithium ion batteries’, Energy Storage Mater., vol. 41, pp. 805–841, Oct. 2021, doi: 10.1016/j.ensm.2021.07.028.
  • [24] Y. Xia and Yun Lu, ‘Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers’, Compos. Sci. Technol., vol. 68, no. 6, pp. 1471–1479, May 2008, doi: 10.1016/j.compscitech.2007.10.044.
  • [25] S. Choi, S. I. Han, D. Kim, T. Hyeon, and D.-H. Kim, ‘High-performance stretchable conductive nanocomposites: materials, processes, and device applications’, Chem. Soc. Rev., vol. 48, no. 6, pp. 1566–1595, Mar. 2019, doi: 10.1039/C8CS00706C.
  • [26] P. Pötschke et al., ‘Melt Mixing as Method to Disperse Carbon Nanotubes into Thermoplastic Polymers’, Fuller. Nanotub. Carbon Nanostructures, Apr. 2005, doi: 10.1081/FST-200039267.
  • [27] L. Ghali, S. Msahli, M. Zidi, and F. Sakli, ‘Effect of pre-treatment of Luffa fibres on the structural properties’, Mater. Lett., vol. 63, no. 1, pp. 61–63, Jan. 2009, doi: 10.1016/j.matlet.2008.09.008.
  • [28] M. Doni, D. Sreeramulu, and N. Ramesh, ‘Synthesis, Characterization, and Properties of Epoxy Filled Luffa cylindrica reinforced composites’, Mater. Today Proc., vol. 5, pp. 6518–6524, Jan. 2018, doi: 10.1016/j.matpr.2018.01.140.
  • [29] I. A. Alhagri et al., ‘Enhanced Structural, Optical Properties and Antibacterial Activity of PEO/CMC Doped TiO2 NPs for Food Packaging Applications’, Polymers, vol. 15, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/polym15020384.
  • [30] R. Sonker, B. Yadav, and G. Dzhardimalieva, ‘Preparation and Properties of Nanostructured PANI Thin Film and Its Application as Low Temperature NO2 Sensor’, J. Inorg. Organomet. Polym. Mater., vol. 26, Nov. 2016, doi: 10.1007/s10904-016-0439-y.
  • [31] M. Á. Robles-García et al., ‘Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization’, Carbohydr. Polym., vol. 192, pp. 69–74, Jul. 2018, doi: 10.1016/j.carbpol.2018.03.058.
  • [32] I. Prabowo, J. N. Pratama, and M. Chalid, ‘The effect of modified ijuk fibers to crystallinity of polypropylene composite’, IOP Conf. Ser. Mater. Sci. Eng., vol. 223, no. 1, p. 012020, Jul. 2017, doi: 10.1088/1757-899X/223/1/012020.
  • [33] A. Villa, J. C. Verduzco, J. A. Libera, and E. E. Marinero, ‘Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification’, Ionics, vol. 27, no. 6, pp. 2483–2493, Jun. 2021, doi: 10.1007/s11581-021-04042-9.
  • [34] A. Dali, I. E. Boulguemh, F. Louafi, and C. Mouats, ‘Synthesis, characterization and environmental application of an original adsorbent: polyaniline-coated luffa cylindrica’, J. Polym. Res., vol. 28, no. 2, p. 33, Jan. 2021, doi: 10.1007/s10965-020-02365-1.
  • [35] A. Kesraoui, A. Moussa, G. B. Ali, and M. Seffen, ‘Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers’, Environ. Sci. Pollut. Res. Int., vol. 23, no. 16, pp. 15832–15840, Aug. 2016, doi: 10.1007/s11356-015-5262-4.
  • [36] H. N. Tran, H.-P. Chao, and S.-J. You, ‘Activated carbons from golden shower upon different chemical activation methods: Synthesis and characterizations’, Adsorpt. Sci. Technol., vol. 36, no. 1–2, pp. 95–113, Feb. 2018, doi: 10.1177/0263617416684837.
  • [37] Y. Guo, L. Wang, Y. Chen, P. Luo, and T. Chen, ‘Properties of Luffa Fiber Reinforced PHBV Biodegradable Composites’, Polymers, vol. 11, p. 1765, Oct. 2019, doi: 10.3390/polym11111765.
  • [38] D. A. Gopakumar et al., ‘Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band’, ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 20032–20043, Jun. 2018, doi: 10.1021/acsami.8b04549.
  • [39] P. V. Joseph et al., ‘The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites’, Compos. Part Appl. Sci. Manuf., vol. 34, no. 3, pp. 253–266, Mar. 2003, doi: 10.1016/S1359-835X(02)00185-9.
  • [40] S. Percec, ‘Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) via phase transfer catalysis’, J. Appl. Polym. Sci., vol. 36, no. 2, pp. 415–427, 1988, doi: 10.1002/app.1988.070360213.
  • [41] B. O. Sen, S. Cetin, U. Yahşi, and U. Soykan, ‘Role of free volume in mechanical behaviors of side chain lcp grafted products of high density polyethylene’, J. Polym. Res., vol. 28, no. 8, p. 313, Jul. 2021, doi: 10.1007/s10965-021-02646-3.
  • [42] R. O. Ebewele, Polymer Science and Technology. Boca Raton: CRC Press, 2015. doi: 10.1201/9781420057805.
  • [43] G. R. Shetty, B. L. Rao, S. Asha, Y. Wang, and Y. Sangappa, ‘Preparation and characterization of silk fibroin/hydroxypropyl methyl cellulose (HPMC) blend films’, Fibers Polym., vol. 16, no. 8, pp. 1734–1741, Aug. 2015, doi: 10.1007/s12221-015-5223-z.

Characterization of Luffa-reinforced Polyaniline Films

Yıl 2025, Cilt: 13 Sayı: 1, 26 - 36, 30.01.2025
https://doi.org/10.29130/dubited.1469198

Öz

Herein, Polyaniline (PANI)/polyethylene oxide (PEO) - luffa cylindrica bio-composite films of various mass fractions (%) have been prepared via casting solution of emeraldine base polyaniline and cellulose extracted from luffa. The biopolymer films were structurally and thermally characterized using X-ray diffraction (XRD), Fournier Transform-InfraRed (FT-IR) spectroscopy, and differential scanning calorimetry analysis (DSC). Moreover, the electrical properties of conductive biopolymer solutions were measured by using the conductivity meter. According to the obtained results, treated luffa increases the conductivity of biopolymers. XRD results reveal that luffa increases the crystallinity of bio-composite films in comparison to PANI/PEO films. FTIR analysis proved the presence of functional groups of PANI, PEO, and luffa in the film structure. Also, an increase in the weight of luffa in the bio-composite film brings about an increase in the peak intensities of the O-H group. It is determined that luffa enhances the thermal stability of composites via the results of DSC analysis.

Kaynakça

  • [1] S. K. Ramamoorthy, M. Skrifvars, and A. Persson, ‘A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers’, Polym. Rev., vol. 55, no. 1, pp. 107–162, Jan. 2015, doi: 10.1080/15583724.2014.971124.
  • [2] I. L. Kalnin, ‘Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli’, US3691000A, Sep. 12, 1972 Accessed: Jun. 20, 2023. [Online]. Available: https://patents.google.com/patent/US3691000A/en
  • [3] O. Akampumuza, Paul. M. Wambua, A. Ahmed, W. Li, and X.-H. Qin, ‘Review of the applications of biocomposites in the automotive industry’, Polym. Compos., vol. 38, no. 11, pp. 2553–2569, 2017, doi: 10.1002/pc.23847.
  • [4] P. Balakrishnan, M. John, L. Pothan, M. S. Sreekala, and S. Thomas, ‘Natural fibre and polymer matrix composites and their applications in aerospace engineering’, 2016, pp. 365–383. doi: 10.1016/B978-0-08-100037-3.00012-2.
  • [5] M. P. Ansell, ‘14 - Natural fibre composites in a marine environment’, in Natural Fibre Composites, A. Hodzic and R. Shanks, Eds., Woodhead Publishing, 2014, pp. 365–374. doi: 10.1533/9780857099228.3.365.
  • [6] D. U. Shah, D. Porter, and F. Vollrath, ‘Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour’, Compos. Part Appl. Sci. Manuf., vol. 62, pp. 1–10, Jul. 2014, doi: 10.1016/j.compositesa.2014.03.008.
  • [7] G. Genc, A. Sarikas, U. Kesen, and S. Aydin, ‘Luffa/Epoxy Composites: Electrical Properties for PCB Application’, IEEE Trans. Compon. Packag. Manuf. Technol., vol. 10, no. 6, pp. 933–940, Jun. 2020, doi: 10.1109/TCPMT.2020.2988456.
  • [8] M. Sahli, S. Rudz, K. Chetehouna, R. Bensaha, and M. Korichi, ‘Development, characterization and photocatalytic study of biocomposites based on PTFE, TiO2 and luffa cylindrica fibers’, Mater. Chem. Phys., p. 127635, 2023, doi: 10.1016/j.matchemphys.2023.127635.
  • [9] G. K. Ege, H. Yuce, O. Akay, H. Oner, and G. Genc, ‘A fabrication and characterization of luffa/PANI/PEO biocomposite nanofibers by means of electrospinning’, Pigment Resin Technol., vol. 52, no. 1, pp. 151–159, Jan. 2023, doi: 10.1108/PRT-09-2021-0105.
  • [10] O. Akay, C. Altinkok, G. Acik, H. Yuce, G. K. Ege, and G. Genc, ‘Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(ɛ-caprolactone) for bioplastic applications’, Int. J. Biol. Macromol., vol. 196, no. October 2021, pp. 98–106, 2022, doi: 10.1016/j.ijbiomac.2021.12.051.
  • [11] B. V. Porras, ‘Characterization of Poly-hydroxybutyrate / Luffa Fibers Composite Material’, no. July, 2020.
  • [12] G. Konuk Ege, Ö. Akay, and H. Yüce, ‘A chemosensitive based ammonia gas sensor with PANI/PEO- ZnO nanofiber composites sensing layer’, Microelectron. Int., Mar. 2023, doi: 10.1108/MI-09-2022-0161.
  • [13] P. P. Sengupta, S. Barik, and B. Adhikari, ‘Polyaniline as a Gas-Sensor Material’, Mater. Manuf. Process., vol. 21, no. 3, pp. 263–270, May 2006, doi: 10.1080/10426910500464602.
  • [14] F.-W. Zeng, X.-X. Liu, D. Diamond, and K. T. Lau, ‘Humidity sensors based on polyaniline nanofibres’, Sens. Actuators B Chem., vol. 143, no. 2, pp. 530–534, Jan. 2010, doi: 10.1016/j.snb.2009.09.050.
  • [15] E. N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, and G. Perale, ‘Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review’, J. Med. Chem., vol. 63, no. 1, pp. 1–22, Jan. 2020, doi: 10.1021/acs.jmedchem.9b00803.
  • [16] C. Bavatharani et al., ‘Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review’, Synth. Met., vol. 271, p. 116609, Jan. 2021, doi: 10.1016/j.synthmet.2020.116609.
  • [17] N. Z. Al-Hazeem and N. M. Ahmed, ‘Effect of Addition of Polyaniline on Polyethylene Oxide and Polyvinyl Alcohol for the Fabrication of Nanorods’, ACS Omega, vol. 5, no. 35, pp. 22389–22394, Sep. 2020, doi: 10.1021/acsomega.0c02802.
  • [18] M. Yazid, S. A. Ghani, S. J. Tan, A. F. Osman, and S. Hajar, ‘Utilization of Polyaniline (PAni) as Conductive Filler on Poly (Ethylene Oxide) / Poly (Vinyl Chloride) Films: Effects of Naphthalene as Surface Modifier on Electrical Conductivity’, J. Phys. Conf. Ser., vol. 908, p. 012006, Oct. 2017, doi: 10.1088/1742-6596/908/1/012006.
  • [19] M. S. Thompson, T. P. Vadala, M. L. Vadala, Y. Lin, and J. S. Riffle, ‘Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers’, Polymer, vol. 49, no. 2, pp. 345–373, Jan. 2008, doi: 10.1016/j.polymer.2007.10.029.
  • [20] D. B. Hall, P. Underhill, and J. M. Torkelson, ‘Spin coating of thin and ultrathin polymer films’, Polym. Eng. Sci., vol. 38, no. 12, pp. 2039–2045, 1998, doi: 10.1002/pen.10373.
  • [21] D. Dastan, S. L. Panahi, and N. B. Chaure, ‘Characterization of titania thin films grown by dip-coating technique’, J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12291–12296, Dec. 2016, doi: 10.1007/s10854-016-4985-4.
  • [22] U. Siemann, ‘Solvent cast technology – a versatile tool for thin film production’, in Scattering Methods and the Properties of Polymer Materials, N. Stribeck and B. Smarsly, Eds., Berlin, Heidelberg: Springer, 2005, pp. 1–14. doi: 10.1007/b107336.
  • [23] S. Zhong et al., ‘Recent progress in thin separators for upgraded lithium ion batteries’, Energy Storage Mater., vol. 41, pp. 805–841, Oct. 2021, doi: 10.1016/j.ensm.2021.07.028.
  • [24] Y. Xia and Yun Lu, ‘Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers’, Compos. Sci. Technol., vol. 68, no. 6, pp. 1471–1479, May 2008, doi: 10.1016/j.compscitech.2007.10.044.
  • [25] S. Choi, S. I. Han, D. Kim, T. Hyeon, and D.-H. Kim, ‘High-performance stretchable conductive nanocomposites: materials, processes, and device applications’, Chem. Soc. Rev., vol. 48, no. 6, pp. 1566–1595, Mar. 2019, doi: 10.1039/C8CS00706C.
  • [26] P. Pötschke et al., ‘Melt Mixing as Method to Disperse Carbon Nanotubes into Thermoplastic Polymers’, Fuller. Nanotub. Carbon Nanostructures, Apr. 2005, doi: 10.1081/FST-200039267.
  • [27] L. Ghali, S. Msahli, M. Zidi, and F. Sakli, ‘Effect of pre-treatment of Luffa fibres on the structural properties’, Mater. Lett., vol. 63, no. 1, pp. 61–63, Jan. 2009, doi: 10.1016/j.matlet.2008.09.008.
  • [28] M. Doni, D. Sreeramulu, and N. Ramesh, ‘Synthesis, Characterization, and Properties of Epoxy Filled Luffa cylindrica reinforced composites’, Mater. Today Proc., vol. 5, pp. 6518–6524, Jan. 2018, doi: 10.1016/j.matpr.2018.01.140.
  • [29] I. A. Alhagri et al., ‘Enhanced Structural, Optical Properties and Antibacterial Activity of PEO/CMC Doped TiO2 NPs for Food Packaging Applications’, Polymers, vol. 15, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/polym15020384.
  • [30] R. Sonker, B. Yadav, and G. Dzhardimalieva, ‘Preparation and Properties of Nanostructured PANI Thin Film and Its Application as Low Temperature NO2 Sensor’, J. Inorg. Organomet. Polym. Mater., vol. 26, Nov. 2016, doi: 10.1007/s10904-016-0439-y.
  • [31] M. Á. Robles-García et al., ‘Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization’, Carbohydr. Polym., vol. 192, pp. 69–74, Jul. 2018, doi: 10.1016/j.carbpol.2018.03.058.
  • [32] I. Prabowo, J. N. Pratama, and M. Chalid, ‘The effect of modified ijuk fibers to crystallinity of polypropylene composite’, IOP Conf. Ser. Mater. Sci. Eng., vol. 223, no. 1, p. 012020, Jul. 2017, doi: 10.1088/1757-899X/223/1/012020.
  • [33] A. Villa, J. C. Verduzco, J. A. Libera, and E. E. Marinero, ‘Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification’, Ionics, vol. 27, no. 6, pp. 2483–2493, Jun. 2021, doi: 10.1007/s11581-021-04042-9.
  • [34] A. Dali, I. E. Boulguemh, F. Louafi, and C. Mouats, ‘Synthesis, characterization and environmental application of an original adsorbent: polyaniline-coated luffa cylindrica’, J. Polym. Res., vol. 28, no. 2, p. 33, Jan. 2021, doi: 10.1007/s10965-020-02365-1.
  • [35] A. Kesraoui, A. Moussa, G. B. Ali, and M. Seffen, ‘Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers’, Environ. Sci. Pollut. Res. Int., vol. 23, no. 16, pp. 15832–15840, Aug. 2016, doi: 10.1007/s11356-015-5262-4.
  • [36] H. N. Tran, H.-P. Chao, and S.-J. You, ‘Activated carbons from golden shower upon different chemical activation methods: Synthesis and characterizations’, Adsorpt. Sci. Technol., vol. 36, no. 1–2, pp. 95–113, Feb. 2018, doi: 10.1177/0263617416684837.
  • [37] Y. Guo, L. Wang, Y. Chen, P. Luo, and T. Chen, ‘Properties of Luffa Fiber Reinforced PHBV Biodegradable Composites’, Polymers, vol. 11, p. 1765, Oct. 2019, doi: 10.3390/polym11111765.
  • [38] D. A. Gopakumar et al., ‘Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band’, ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 20032–20043, Jun. 2018, doi: 10.1021/acsami.8b04549.
  • [39] P. V. Joseph et al., ‘The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites’, Compos. Part Appl. Sci. Manuf., vol. 34, no. 3, pp. 253–266, Mar. 2003, doi: 10.1016/S1359-835X(02)00185-9.
  • [40] S. Percec, ‘Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) via phase transfer catalysis’, J. Appl. Polym. Sci., vol. 36, no. 2, pp. 415–427, 1988, doi: 10.1002/app.1988.070360213.
  • [41] B. O. Sen, S. Cetin, U. Yahşi, and U. Soykan, ‘Role of free volume in mechanical behaviors of side chain lcp grafted products of high density polyethylene’, J. Polym. Res., vol. 28, no. 8, p. 313, Jul. 2021, doi: 10.1007/s10965-021-02646-3.
  • [42] R. O. Ebewele, Polymer Science and Technology. Boca Raton: CRC Press, 2015. doi: 10.1201/9781420057805.
  • [43] G. R. Shetty, B. L. Rao, S. Asha, Y. Wang, and Y. Sangappa, ‘Preparation and characterization of silk fibroin/hydroxypropyl methyl cellulose (HPMC) blend films’, Fibers Polym., vol. 16, no. 8, pp. 1734–1741, Aug. 2015, doi: 10.1007/s12221-015-5223-z.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genel Fizik
Bölüm Makaleler
Yazarlar

Ozge Akay Sefer 0000-0002-7073-4785

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 16 Nisan 2024
Kabul Tarihi 23 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Akay Sefer, O. (2025). Characterization of Luffa-reinforced Polyaniline Films. Duzce University Journal of Science and Technology, 13(1), 26-36. https://doi.org/10.29130/dubited.1469198
AMA Akay Sefer O. Characterization of Luffa-reinforced Polyaniline Films. DÜBİTED. Ocak 2025;13(1):26-36. doi:10.29130/dubited.1469198
Chicago Akay Sefer, Ozge. “Characterization of Luffa-Reinforced Polyaniline Films”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 26-36. https://doi.org/10.29130/dubited.1469198.
EndNote Akay Sefer O (01 Ocak 2025) Characterization of Luffa-reinforced Polyaniline Films. Duzce University Journal of Science and Technology 13 1 26–36.
IEEE O. Akay Sefer, “Characterization of Luffa-reinforced Polyaniline Films”, DÜBİTED, c. 13, sy. 1, ss. 26–36, 2025, doi: 10.29130/dubited.1469198.
ISNAD Akay Sefer, Ozge. “Characterization of Luffa-Reinforced Polyaniline Films”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 26-36. https://doi.org/10.29130/dubited.1469198.
JAMA Akay Sefer O. Characterization of Luffa-reinforced Polyaniline Films. DÜBİTED. 2025;13:26–36.
MLA Akay Sefer, Ozge. “Characterization of Luffa-Reinforced Polyaniline Films”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 26-36, doi:10.29130/dubited.1469198.
Vancouver Akay Sefer O. Characterization of Luffa-reinforced Polyaniline Films. DÜBİTED. 2025;13(1):26-3.