Araştırma Makalesi
BibTex RIS Kaynak Göster

Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods

Yıl 2025, Cilt: 13 Sayı: 1, 219 - 233, 30.01.2025
https://doi.org/10.29130/dubited.1501760

Öz

Determining the health status of cancer patients is of vital importance in the cancer treatment process. This process plays a critical role in assessing patients' quality of life and supporting the treatment process. We thought that the use of machine learning in the field of cancer treatment and patient care could contribute to better patient outcomes and increased quality of life. Evaluation results of cancer patients who received home health care from XXXXXX and Research Hospital between January 2013 and August 2017 were discussed and 1000 patient files in home health service patient records were prospectively examined. In this article, cancer types were classified with machine learning methods using the Visual Analog Scale (VAS), Karnofsky performance scale, ECOG, Katz and Bartel scores to determine the quality of life of cancer patients receiving home health care. This study includes the evaluation results of 132 patients, 69 women (mean age 60.31±9.61) and 63 men (mean age 62.36±9.58). The DT classifier was noted to exhibit 83.3% accuracy and had the highest sensitivity in the lung cancer type, with a sensitivity of 88.9%. SVM classifier reached the highest accuracy compared to other classifiers with 90.2% accuracy. SVM has the highest sensitivity in lung cancers, with a sensitivity of 97.8%. The ANN classifier achieved 88.6% accuracy for all cancer types.The use of machine learning algorithms may provide a more sensitive and objective way to evaluate patients' response to treatment. The machine learning model allows determining the type of cancer using the feature space based on VAS, Karnofsky performance scale, ECOG, Katz and Bartel scores. This situation can also be constructed as an indicator in early diagnosis or risk group determination, and thus can contribute to improving home health services and increasing the quality of life of cancer patients. The results of this study may contribute to studies aimed at developing more effective strategies for the care and treatment of cancer patients.

Kaynakça

  • [1] L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, "Global cancer incidence and mortality rates and trends—an update," Cancer epidemiology, biomarkers & prevention, vol. 25, no. 1, pp. 16-27, 2016.
  • [2] M. P. Coleman et al., "Cancer survival in five continents: a worldwide population-based study (CONCORD)," The lancet oncology, vol. 9, no. 8, pp. 730-756, 2008.
  • [3] D. L. Lovelace, L. R. McDaniel, and D. Golden, "Long‐term effects of breast cancer surgery, treatment, and survivor care," Journal of midwifery & women's health, vol. 64, no. 6, pp. 713-724, 2019.
  • [4] D. P. Gopal, B. H. de Rooij, N. P. Ezendam, and S. J. Taylor, "Delivering long-term cancer care in primary care," vol. 70, ed: British Journal of General Practice, 2020, pp. 226-227.
  • [5] A. L. Cheville, A. B. Troxel, J. R. Basford, and A. B. Kornblith, "Prevalence and treatment patterns of physical impairments in patients with metastatic breast cancer," Journal of clinical oncology: official journal of the American Society of Clinical Oncology, vol. 26, no. 16, p. 2621, 2008.
  • [6] A. T. Johnsen, M. A. Petersen, L. Pedersen, L. J. Houmann, and M. Groenvold, "Do advanced cancer patients in Denmark receive the help they need? A nationally representative survey of the need related to 12 frequent symptoms/problems," Psycho‐Oncology, vol. 22, no. 8, pp. 1724-1730, 2013.
  • [7] J. Thuesen and H. Timm, "Palliation og rehabilitering; begrebslige og praktiske forskelle og ligheder," Omsorg. Nordisk tidsskrift for palliativ medisin, vol. 31, no. 3, pp. 30-35, 2014.
  • [8] J. K. Silver, J. Baima, and R. S. Mayer, "Impairment‐driven cancer rehabilitation: an essential component of quality care and survivorship," CA: a cancer journal for clinicians, vol. 63, no. 5, pp. 295-317, 2013.
  • [9] K. Covinsky, "Aging, arthritis, and disability," Arthritis Care & Research: Official Journal of the American College of Rheumatology, vol. 55, no. 2, pp. 175-176, 2006.
  • [10] E. K. Grov, S. D. Fosså, and A. A. Dahl, "Activity of daily living problems in older cancer survivors: A population‐based controlled study," Health & social care in the community, vol. 18, no. 4, pp. 396-406, 2010.
  • [11] Shilo, S., Rossman, H., & Segal, E. "Axes of a revolution: challenges and promises of big data in healthcare". Nature Medicine, 26(1), 29-38, 2020.
  • [12] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. " Dermatologist-level classification of skin cancer with deep neural networks." Nature, 542(7639), 115-118, 2017.
  • [13] Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. "Recurrent neural networks for multivariate time series with missing values." Scientific reports, 8(1), 6085,2017.
  • [14] R. Chou et al., "Guidelines on the management of postoperative pain," J Pain, vol. 17, no. 2, pp. 131-157, 2016.
  • [15] H. B. Kjeldsen, T. W. Klausen, and J. Rosenberg, "Preferred presentation of the visual analog scale for measurement of postoperative pain," Pain practice, vol. 16, no. 8, pp. 980-984, 2016.
  • [16] D. Péus, N. Newcomb, and S. Hofer, "Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation," BMC medical informatics and decision making, vol. 13, pp. 1-7, 2013.
  • [17] S.-Y. Suh, T. W. LeBlanc, R. A. Shelby, G. P. Samsa, and A. P. Abernethy, "Longitudinal patient-reported performance status assessment in the cancer clinic is feasible and prognostic," Journal of oncology practice, vol. 7, no. 6, pp. 374-381, 2011.
  • [18] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe, "Studies of illness in the aged: the index of ADL: a standardized measure of biological and psychosocial function," jama, vol. 185, no. 12, pp. 914-919, 1963.
  • [19] M. Şahbaz And H. Tel Aydin, "Evde yaşayan 65 yaş ve üzeri bireylerin günlük yaşam aktivitelerindeki bağımlılık durumu ile ev kazaları arasındaki işilkinin incelenmesi," Türk Geriatri Dergisi, vol. 9, no. 2, pp. 85-93, 2006.
  • [20] E. F. Ö. Pehlivanoğlu, M. U. Özkan, H. Balcioğlu, U. Bilge, and İ. Ünlüoğlu, "Adjustment and reliability of katz daily life activity measures for elderly in Turkish," Ankara Medical Journal, vol. 18, no. 2, pp. 219-223, 2018.
  • [21] S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz, "Progress in development of the index of ADL," The gerontologist, vol. 10, no. 1_Part_1, pp. 20-30, 1970.
  • [22] A. A. Küçükdeveci, G. Yavuzer, A. Tennant, N. Süldür, B. Sonel, and T. Arasil, "Adaptation of the modified Barthel Index for use in physical medicine and rehabilitation in Turkey," Scandinavian journal of rehabilitation medicine, vol. 32, no. 2, pp. 87-92, 2000.
  • [23] O. Olanloye, O. Olasunkanmi, And O. Oduntan, "Comparison of Support Vector Machine Models in the Classification of Susceptibility to Schistosomiasis," Balkan Journal of Electrical and Computer Engineering, vol. 8, no. 3, pp. 266-271, 2020.
  • [24] T. Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 305-314, 2019.
  • [25] M. D. Sadanand, "Basic of Artificial Neural Network."
  • [26] Ş. Bayraktar and C. Alparslan, "Artificial Neural Networks for Machining," in Advances in Sustainable Machining and Manufacturing Processes: CRC Press, 2022, pp. 189-204.
  • [27] R. Weiss, S. Karimijafarbigloo, D. Roggenbuck, and S. Rödiger, "Applications of Neural Networks in Biomedical Data Analysis," Biomedicines, vol. 10, no. 7, p. 1469, 2022.
  • [28] M. Ramezani and A. Afsari, "Surface roughness and cutting force estimation in the CNC turning using artificial neural networks," Management Science Letters, vol. 5, no. 4, pp. 357-362, 2015.
  • [29] V. Vapnik, "Statistical Learning Theory. New York: John Willey & Sons," Inc, 1998.
  • [30] S. R. Gunn, "Support vector machines for classification and regression," ISIS technical report, vol. 14, no. 1, pp. 5-16, 1998.
  • [31] Silver, J. K., Baima, J., and Mayer, R. S."Impairment‐driven cancer rehabilitation: an essential component of quality care and survivorship." CA: a cancer journal for clinicians, 63(5), 295-317, 2013.
  • [32] Wu, T. Y., and K. W. Lei. "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network." The International Journal of Advanced Manufacturing Technology 102.1: 305-314, 2019.

Evde Sağlık Hizmeti Alan Kanser Hastalarının Durumunun Makine Öğrenmesi Yöntemleri ile Sınıflandırılması

Yıl 2025, Cilt: 13 Sayı: 1, 219 - 233, 30.01.2025
https://doi.org/10.29130/dubited.1501760

Öz

Kanser hastalarının sağlık durumlarının belirlenmesi, kanser tedavisi sürecinde hayati bir öneme sahiptir. Bu süreç, hastaların yaşam kalitesini değerlendirmek ve tedavi sürecini desteklemek için kritik bir rol oynamaktadır. Biz de makine öğrenmesinin kanser tedavisi ve hasta bakımı alanında kullanılmasının, daha iyi hasta sonuçlarına ve yaşam kalitesinin artırılmasına katkı sağlayabileceğini düşündük. Ocak 2013-Ağustos 2017 tarihleri arasında XXX Hastanesi’nden evde sağlık hizmeti alan kanser hastalarının değerlendirme sonuçları ele alındı ve Evde sağlık hizmeti alan hasta kayıtlarındaki 1000 hasta dosyası prospektif olarak incelendi. Bu makalede, evde sağlık hizmeti alan, kanser hastalarının yaşam kalitesini belirlemek için Visual Analog Scale (VAS), Karnofsky performans ölçeği, ECOG, Katz ve Bartel skorlarını kullanarak makine öğrenmesi yöntemleriyle kanser türleri sınıflandırıldı. Bu çalışma, 69'u kadın (ortalama yaş 60,31±9,61) ve 63 erkek (ortalama yaş 62,36±9,58) olmak üzere 132 hastanın değerlendirme sonuçlarını içermektedir. DT sınıflandırıcı %83,3 doğruluk sergilediği ve akciğer kanser türünde %88,9 duyarlılıkla en yüksek duyarlılığa sahip olduğu kaydedilmiştir. SVM sınıflandırıcı %90.2 doğruluk ile diğer sınıflandırıcılara göre en yüksek doğruluğa ulaşmıştır. SVM en fazla %97.8 duyarlılıkla akciğer kanserlerinde duyarlılığa sahiptir. ANN sınıflandırıcısı tüm kanser türleri için %88.6 doğruluk elde etmiştir. Makine öğrenmesi algoritmalarının kullanımı, hastaların tedaviye yanıtının değerlendirilmesinde daha hassas ve objektif bir yol sağlayabilir. Makine öğrenmesi modeli, VAS, Karnofsky performans ölçeği, ECOG, Katz ve Bartel skorlarına dayalı özellik uzayını kullanarak kanser türünün belirlenmesine olanak sağlamaktadır. Bu durum erken tanıda ya da risk grubu belirlemede bir gösterge olarak da kurgulanabilir ve böylelikle evde sağlık hizmetlerinin iyileştirilmesine ve kanser hastalarının yaşam kalitesinin artırılmasına katkıda bulunabilir. Bu çalışmanın sonuçları, kanser hastalarının bakımı ve tedavisi için daha etkili stratejiler geliştirmeye yönelik yürütülen çalışmalara katkı sağlayabilir.

Kaynakça

  • [1] L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, "Global cancer incidence and mortality rates and trends—an update," Cancer epidemiology, biomarkers & prevention, vol. 25, no. 1, pp. 16-27, 2016.
  • [2] M. P. Coleman et al., "Cancer survival in five continents: a worldwide population-based study (CONCORD)," The lancet oncology, vol. 9, no. 8, pp. 730-756, 2008.
  • [3] D. L. Lovelace, L. R. McDaniel, and D. Golden, "Long‐term effects of breast cancer surgery, treatment, and survivor care," Journal of midwifery & women's health, vol. 64, no. 6, pp. 713-724, 2019.
  • [4] D. P. Gopal, B. H. de Rooij, N. P. Ezendam, and S. J. Taylor, "Delivering long-term cancer care in primary care," vol. 70, ed: British Journal of General Practice, 2020, pp. 226-227.
  • [5] A. L. Cheville, A. B. Troxel, J. R. Basford, and A. B. Kornblith, "Prevalence and treatment patterns of physical impairments in patients with metastatic breast cancer," Journal of clinical oncology: official journal of the American Society of Clinical Oncology, vol. 26, no. 16, p. 2621, 2008.
  • [6] A. T. Johnsen, M. A. Petersen, L. Pedersen, L. J. Houmann, and M. Groenvold, "Do advanced cancer patients in Denmark receive the help they need? A nationally representative survey of the need related to 12 frequent symptoms/problems," Psycho‐Oncology, vol. 22, no. 8, pp. 1724-1730, 2013.
  • [7] J. Thuesen and H. Timm, "Palliation og rehabilitering; begrebslige og praktiske forskelle og ligheder," Omsorg. Nordisk tidsskrift for palliativ medisin, vol. 31, no. 3, pp. 30-35, 2014.
  • [8] J. K. Silver, J. Baima, and R. S. Mayer, "Impairment‐driven cancer rehabilitation: an essential component of quality care and survivorship," CA: a cancer journal for clinicians, vol. 63, no. 5, pp. 295-317, 2013.
  • [9] K. Covinsky, "Aging, arthritis, and disability," Arthritis Care & Research: Official Journal of the American College of Rheumatology, vol. 55, no. 2, pp. 175-176, 2006.
  • [10] E. K. Grov, S. D. Fosså, and A. A. Dahl, "Activity of daily living problems in older cancer survivors: A population‐based controlled study," Health & social care in the community, vol. 18, no. 4, pp. 396-406, 2010.
  • [11] Shilo, S., Rossman, H., & Segal, E. "Axes of a revolution: challenges and promises of big data in healthcare". Nature Medicine, 26(1), 29-38, 2020.
  • [12] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. " Dermatologist-level classification of skin cancer with deep neural networks." Nature, 542(7639), 115-118, 2017.
  • [13] Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. "Recurrent neural networks for multivariate time series with missing values." Scientific reports, 8(1), 6085,2017.
  • [14] R. Chou et al., "Guidelines on the management of postoperative pain," J Pain, vol. 17, no. 2, pp. 131-157, 2016.
  • [15] H. B. Kjeldsen, T. W. Klausen, and J. Rosenberg, "Preferred presentation of the visual analog scale for measurement of postoperative pain," Pain practice, vol. 16, no. 8, pp. 980-984, 2016.
  • [16] D. Péus, N. Newcomb, and S. Hofer, "Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation," BMC medical informatics and decision making, vol. 13, pp. 1-7, 2013.
  • [17] S.-Y. Suh, T. W. LeBlanc, R. A. Shelby, G. P. Samsa, and A. P. Abernethy, "Longitudinal patient-reported performance status assessment in the cancer clinic is feasible and prognostic," Journal of oncology practice, vol. 7, no. 6, pp. 374-381, 2011.
  • [18] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe, "Studies of illness in the aged: the index of ADL: a standardized measure of biological and psychosocial function," jama, vol. 185, no. 12, pp. 914-919, 1963.
  • [19] M. Şahbaz And H. Tel Aydin, "Evde yaşayan 65 yaş ve üzeri bireylerin günlük yaşam aktivitelerindeki bağımlılık durumu ile ev kazaları arasındaki işilkinin incelenmesi," Türk Geriatri Dergisi, vol. 9, no. 2, pp. 85-93, 2006.
  • [20] E. F. Ö. Pehlivanoğlu, M. U. Özkan, H. Balcioğlu, U. Bilge, and İ. Ünlüoğlu, "Adjustment and reliability of katz daily life activity measures for elderly in Turkish," Ankara Medical Journal, vol. 18, no. 2, pp. 219-223, 2018.
  • [21] S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz, "Progress in development of the index of ADL," The gerontologist, vol. 10, no. 1_Part_1, pp. 20-30, 1970.
  • [22] A. A. Küçükdeveci, G. Yavuzer, A. Tennant, N. Süldür, B. Sonel, and T. Arasil, "Adaptation of the modified Barthel Index for use in physical medicine and rehabilitation in Turkey," Scandinavian journal of rehabilitation medicine, vol. 32, no. 2, pp. 87-92, 2000.
  • [23] O. Olanloye, O. Olasunkanmi, And O. Oduntan, "Comparison of Support Vector Machine Models in the Classification of Susceptibility to Schistosomiasis," Balkan Journal of Electrical and Computer Engineering, vol. 8, no. 3, pp. 266-271, 2020.
  • [24] T. Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 305-314, 2019.
  • [25] M. D. Sadanand, "Basic of Artificial Neural Network."
  • [26] Ş. Bayraktar and C. Alparslan, "Artificial Neural Networks for Machining," in Advances in Sustainable Machining and Manufacturing Processes: CRC Press, 2022, pp. 189-204.
  • [27] R. Weiss, S. Karimijafarbigloo, D. Roggenbuck, and S. Rödiger, "Applications of Neural Networks in Biomedical Data Analysis," Biomedicines, vol. 10, no. 7, p. 1469, 2022.
  • [28] M. Ramezani and A. Afsari, "Surface roughness and cutting force estimation in the CNC turning using artificial neural networks," Management Science Letters, vol. 5, no. 4, pp. 357-362, 2015.
  • [29] V. Vapnik, "Statistical Learning Theory. New York: John Willey & Sons," Inc, 1998.
  • [30] S. R. Gunn, "Support vector machines for classification and regression," ISIS technical report, vol. 14, no. 1, pp. 5-16, 1998.
  • [31] Silver, J. K., Baima, J., and Mayer, R. S."Impairment‐driven cancer rehabilitation: an essential component of quality care and survivorship." CA: a cancer journal for clinicians, 63(5), 295-317, 2013.
  • [32] Wu, T. Y., and K. W. Lei. "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network." The International Journal of Advanced Manufacturing Technology 102.1: 305-314, 2019.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoenformatik
Bölüm Makaleler
Yazarlar

Mürsel Kahveci 0000-0002-5661-5771

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 15 Haziran 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kahveci, M. (2025). Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods. Duzce University Journal of Science and Technology, 13(1), 219-233. https://doi.org/10.29130/dubited.1501760
AMA Kahveci M. Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods. DÜBİTED. Ocak 2025;13(1):219-233. doi:10.29130/dubited.1501760
Chicago Kahveci, Mürsel. “Classification of the Condition of Cancer Patients Receiving Home Health Care With Machine Learning Methods”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 219-33. https://doi.org/10.29130/dubited.1501760.
EndNote Kahveci M (01 Ocak 2025) Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods. Duzce University Journal of Science and Technology 13 1 219–233.
IEEE M. Kahveci, “Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods”, DÜBİTED, c. 13, sy. 1, ss. 219–233, 2025, doi: 10.29130/dubited.1501760.
ISNAD Kahveci, Mürsel. “Classification of the Condition of Cancer Patients Receiving Home Health Care With Machine Learning Methods”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 219-233. https://doi.org/10.29130/dubited.1501760.
JAMA Kahveci M. Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods. DÜBİTED. 2025;13:219–233.
MLA Kahveci, Mürsel. “Classification of the Condition of Cancer Patients Receiving Home Health Care With Machine Learning Methods”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 219-33, doi:10.29130/dubited.1501760.
Vancouver Kahveci M. Classification of the Condition of Cancer Patients Receiving Home Health Care with Machine Learning Methods. DÜBİTED. 2025;13(1):219-33.