Araştırma Makalesi
BibTex RIS Kaynak Göster

The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance

Yıl 2025, Cilt: 13 Sayı: 1, 357 - 371, 30.01.2025
https://doi.org/10.29130/dubited.1530876

Öz

This study investigates the electrical and charge transport properties of Schottky diodes with a p-Si/TiO2/SAM/Al structure, incorporating the self-assembly monolayers (SAMs) 4", 4""-[biphenyl-4,4" diylbis(phenylimino)]dibiphenyl-4-carboxylic acid (MZ187) onto a titanium dioxide (TiO2) layer synthesized via the sol-gel method. The impact of the MZ187 molecule on diode performance was evaluated based on parameters such as the barrier height (∅b), ideality factor (n), and series resistance (Rs). Experimental results reveal that the MZ187 monolayers on TiO2 substantially enhanced diode performance, reducing the n from 3.7 for the control diode to 2.7 for the MZ187-modified diode. The Rs was also significantly reduced, while the ∅b increased. The rectification ratio increased from 1.3x102 for the control diode to 2.2x103 for the MZ187 modified diode. These improvements are attributed to the ability of MZ187 molecules to minimize interface states (Nss) and improve surface quality. These findings underscore the critical role of SAMs in optimizing Schottky diode performance and demonstrate how the MZ187 molecule enhances diode efficiency by altering interface properties. The effectiveness of SAM coatings in enhancing Schottky diode performance makes a significant contribution to the field of nanoelectronics. This research paves the way for future studies on the use of SAMs in various nano
electronic applications and offers promising potential for improving the performance and reliability of these technologies.

Kaynakça

  • [1] A. J. King, A. Z. Weber, and A. T. Bell, “Theory and simulation of metal-insulatorsemiconductor (MIS) photoelectrodes,” ACS Appl Mater Interfaces, vol. 15, no. 19, pp. 2302423039, 2023.
  • [2] S. Zeyrek, “The effect of interface states and series resistance on current-voltage characteristics in (MIS) schottky diodes,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 15, no. 2, pp. 1–9, 2015.
  • [3] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices Third Edition, New Jersey, USA, John Wiley & Sons, Inc., 2007, pp. 90-96.
  • [4] Ç. Ş. Güçlü, “A comparison electronic specifications of the ms & mps type Schottky diodes (SDS) via utilizing voltage-current (V-I) characteristics,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 10, no. 1, pp. 62–69, 2023.
  • [5] M. Soylu, I. S. Yahia, F. Yakuphanoglu, and W. A. Farooq, “Modification of electrical properties of al/p-si Schottky barrier device based on 2′-7′-dichlorofluorescein,” J Appl Phys, vol. 110, no. 7, pp. 074514, 2011.
  • [6] S. S. Fouad, G. B. Sakr, I. S. Yahia, D. M. Abdel-Basset, and F. Yakuphanoglu, “Capacitance and conductance characterization of nano-ZnGa 2Te4/n-si diode,” Mater Res Bull, vol. 49, no. 1, pp. 369–383, 2014.
  • [7] Ö. Vural, Y. Şafak, A. Türüt, and Ş. Altindal, “Temperature dependent negative capacitance behavior of Al/rhodamine-101/n- GaAs Schottky barrier diodes and R s effects on the C-V and G/ω-V characteristics,” J Alloys Compd, vol. 513, pp. 107–111, 2012.
  • [8] K. Shili, M. Ben Karoui, R. Gharbi, M. Abdelkrim, M. Fathallah, and S. Ferrero, “Series resistance study of Schottky diodes developed on 4H-SiC wafers using a contact of titanium or molybdenum,” Microelectron Eng, vol. 106, pp. 43–47, 2013.
  • [9] O. Pakma, N. Serin, T. Serin, and Ş. Altndal, “On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TiO2/pSi (MIS) structures,” Physica B Condens Matter, vol. 406, no. 4, pp. 771–776, 2011.
  • [10] Gyanan, S. Mondal, and A. Kumar, “Tunable dielectric properties of TiO2 thin film based MOS systems for application in microelectronics,” Superlattices Microstructures, vol. 100, pp. 876–885, 2016.
  • [11] G. Zerjav, K. Zizek, J. Zavasnik, and A. Pintar, “Brookite vs. rutile vs. anatase: What’s behind their various photocatalytic activities?,” J Environ Chem Eng, vol. 10, no. 3, pp. 107722, 2022.
  • [12] R. Agarwal, Himanshu, S. L. Patel, S. Chander, C. Ameta, and M. S. Dhaka, “Understanding the physical properties of thin TiO2 films treated in different thermal atmospheric conditions,” Vacuum, vol. 177, pp. 109347, 2020.
  • [13] J. Buckeridge et al., “Polymorph engineering of Tio2: demonstrating how absolute reference potentials are determined by local coordination,” Chemistry of Materials, vol. 27, no. 11, pp. 3844–3851, 2015.
  • [14] S.-D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Physical Review B, Vol. 51, no. 19, pp. 13023-13032, 1994.
  • [15] W. Promnopas et al., “Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method,” Surf Coat Technol, vol. 306, pp. 69–74, 2016.
  • [16] D. Bokov et al., “Nanomaterial by sol-gel method: synthesis and application,” Advances in Materials Science and Engineering, Vol. 2021, Issue 1, pp. 5102014, 2021.
  • [17] O. Pakma, N. Serin, T. Serin, and Ş. Altindal, “The double Gaussian distribution of barrier heights in Al/ TiO 2/p-Si (metal-insulator-semiconductor) structures at low temperatures,” J Appl Phys, vol. 104, no. 1, pp. 014501, 2008.
  • [18] B. Kinaci, S. Şebnem Çetin, A. Bengi, and S. Özçelik, “The temperature dependent analysis of Au/TiO2 (rutile)/n-Si (MIS) SBDs using current-voltage-temperature (I-V-T) characteristics,” Mater Sci Semicond Process, vol. 15, no. 5, pp. 531–535, 2012.
  • [19] B. Kinaci, T. Asar, Y. Özen, and S. Özçelik, “The analysis of Au/Ti02/n-Si Schottky barrier diode at high temperatures using I-V characteristics,” Optoelectronics and Advanced Materials-rapid Communications, vol. 5, no. 4, pp. 434–437, 2011.
  • [20] S. B. K Aydin, I. E. Yildiz, and I. Kanbur Çavu, “ALD TiO 2 thin film as dielectric for Al/p-Si Schottky diode,”Bulletin of Materials Science, Vol. 37, pp. 1563-1568, 2014.
  • [21] E. E. Tanrikulu, D. E. Yildiz, A. Günen, and Altindal, “Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes,” Phys Scr, vol. 90, no. 9, pp. 095801, 2015.
  • [22] M. Yilmaz, B. B. Cirak, S. Aydogan, M. L. Grilli, and M. Biber, “Facile electrochemical-assisted synthesis of TiO2 nanotubes and their role in Schottky barrier diode applications,” Superlattices Microstructures, vol. 113, pp. 310–318, 2018.
  • [23] İ. H. Taşdemir, Ö. Vural, and İ. Dökme, “Electrical characteristics of p-Si/TiO2/Al and p-Si/TiO2-Zr/Al Schottky devices,” Philosophical Magazine, vol. 96, no. 16, pp. 1684–1693, 2016.
  • [24] A. Kürşat Bilgili, R. Çağatay, M. K. Öztürk, and M. Özer, “Investigation of electrical and structural properties of Ag/TiO 2 /n-InP/Au Schottky diodes with different thickness TiO 2 interface”, Silicon, Vol. 14, pp. 3013-3018, 2022.
  • [25] B. Y. Tsui, J. C. Cheng, L. S. Lee, C. Y. Lee, and M. J. Tsai, “Schottky barrier height modification of metal/4H-SiC contact using ultrathin TiO2 insertion method,” Japanese Journal of Applied Physics, Vol. 53, pp. 04EP10, 2014.
  • [26] L. B. Taşyürek, “Synthesis of TiO2 nanotubes and photodiode performance,” Türk Doğa ve Fen Dergisi, vol. 12, no. 3, pp. 72–77, 2023.
  • [27] A. M. Nawar, M. Abd-Elsalam, A. M. El-Mahalawy, and M. M. El-Nahass, “Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS-Schottky heterojunction,” Appl Phys A Mater Sci Process, vol. 126, no. 113, 2020.
  • [28] F. Yakuphanoglu, S. Okur, and H. Özgener, “Modification of metal/semiconductor junctions by self-assembled monolayer organic films,” Microelectron Eng, vol. 86, no. 11, pp. 2358–2363, 2009.
  • [29] Z. Çaldıran, “Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure,” J Alloys Compd, vol. 865, pp. 158856, 2021.
  • [30] G. Güler, Ö. Güllü, Ş. Karataş, and Ö. F. Bakkalolu, “Analysis of the series resistance and interface state densities in metal semiconductor structures,” J Phys Conf Ser, vol. 153, pp. 012054, 2009.
  • [31] I. M. Afandiyeva, S. Altιndal, L. K. Abdullayeva, and A. I. Bayramova, “Self-assembled patches in PtSi/n-Si (111) diodes,” Journal of Semiconductors, vol. 39, no. 5, pp. 054002, 2018.
  • [32] M. Can et al., “Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications,” Appl Surf Sci, vol. 314, pp. 1082–1086, 2014.
  • [33] S. Kim and H. Yoo, “Self-assembled monolayers: Versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers,” Micromachines, Vol. 12 (5), pp. 565, 2021.
  • [34] Z. R. Lan, J. Y. Shao, and Y. W. Zhong, “Self-assembled monolayers as hole transporting materials for inverted perovskite solar cells,” Mol. Syst. Des. Eng., Vol. 8, pp. 1440-1455, 2023.
  • [35] S. H. Hsiao, J. X. Wu, and H. I. Chen, “High-selectivity NOx sensors based on an Au/InGaP Schottky diode functionalized with self-assembled monolayer of alkanedithiols,” Sens Actuators B Chem, vol. 305, pp. 127269, 2020.
  • [36] B. De Boer, A. Hadipour, M. M. Mandoc, T. Van Woudenbergh, and P. W. M. Blom, “Tuning of metal work functions with self-assembled monolayers,” Advanced Materials, vol. 17, no. 5, pp. 621–625, 2005.
  • [37] Y. Liu, D. Ji, and W. Hu, “Recent progress of interface self-assembled monolayers engineering organic optoelectronic devices,” DeCarbon, vol. 3, p. 100035, 2024.
  • [38] M. Can and A. K. Havare, “OLED application of π-conjugated phenylimino carboxylic acid organic semiconductor material,” EPJ Applied Physics, vol. 97, no. 33, pp.8, 2022.
  • [39] C. Tozlu, A. Mutlu, M. Can, A. K. Havare, S. Demic, and S. Icli, “Effect of TiO 2 modification with amino-based self-assembled monolayer on inverted organic solar cell,” Appl Surf Sci, vol. 422, pp. 1129–1138, 2017.
  • [40] Western Kern, Handbook of Semiconductor Wafer Cleaning Technology, New Jersey, USA, pp. 253-256, 1993.
  • [41] H. Noh, S. G. Oh, and S. S. Im, “Preparation of anatase TiO 2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells,” Appl Surf Sci, vol. 333, pp. 157–162, 2015.
  • [42] M. Shahiduzzaman et al., “Low-temperature treated anatase TiO2 nanophotonic structured contact design for efficient triple-cation perovskite solar cells,” Chemical Engineering Journal, vol. 426, pp. 131831, 2021.
  • [43] O. Pakma, N. Serin, T. Serin, and Ş. Altndal, “On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TiO2/pSi (MIS) structures,” Physica B Condens Matter, vol. 406, no. 4, pp. 771–776, 2011.
  • [44] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts Second Edition, Clarendon Press, Oxford, pp. 89-109, 1988.
  • [45] B. Akın, M. Ulusoy, and S. Altındal Yerişkin, “Investigation of the interface state characteristics of the Al/Al2O3/Ge/p-Si heterostructure over a wide frequency range by capacitance and conductance measurements,” Mater Sci Semicond Process, vol. 170, pp. 107951, 2024.
  • [46] H. J. Lee, W. A. Anderson, H. Hardtdegen, and H. Lilth, “Barrier height enhancement of Schottky diodes on n- In0.53Ga0.47As by cryogenic processing,” Appl. Phys. Lett., Vol. 63, 1939–1941, 1993.
  • [47] A. D. Marwick, M. O. Aboelfotoh, and R. Casparis, “Increase in Schottky barrier height in the CoSi 2 /Si (100) interface caused by hydrogen.” Mrs Online Proceeding Library, Vol. 281, pp. 629-634, 1992.
  • [48] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl Phys Lett, vol. 49, no. 2, pp. 85–87, 1986.
  • [49] S. Y. Yu, D. C. Huang, Y. L. Chen, K. Y. Wu, and Y. T. Tao, “Approaching charge balance in organic light-emitting diodes by tuning charge injection barriers with mixed monolayers,” Langmuir, vol. 28, no. 1, pp. 424-430, 2012.
  • [50] G. S. Kim, S. H. Kim, J. Park, K. H. Han, J. Kim, and H. Y. Yu, “Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal induced gap states,” ACS Nano, vol. 12, no. 6, pp. 6292–6300, 2018.
  • [51] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J Appl Phys, vol. 50, no. 7, pp. 5052–5053, 1979.
  • [52] G. Çankaya and N. Uçar, “Schottky barrier height dependence on the metal work function for p-type si Schottky diodes,” Z. Naturforsch., Vol. 59a, pp. 795-798, 2004. [53] D. A. Aldemir, A. Kökce, and A. F. Özdemir, “Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması,” SAÜ Fen Bilimleri Enstitüsü Dergisi, Vol. 21, Issue 6, pp. 1286-1292, 2017.
  • [54] S. Hameed, Ö. Berkün, and S. Altındal Yerişkin, “On the voltage dependent series resistance, interface traps, and conduction mechanisms in the Al/(Ti-doped dlc)/p-si/Au Schottky barrier diodes (SBDs),” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 11, no. 1, pp. 235–244, 2024.
  • [55] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys., Vol. 4, pp. 1589, 1971.
  • [56] S. ALTINDAL YERİŞKİN, “Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms(CMs) in the Au/n-Si (MS) structures at room temperature,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no. 2, pp. 835-846, 2019.
  • [57] D. E. Yildiz, Ş. Altindal, Z. Tekeli, and M. Özer, “The effects of surface states and series resistance on the performance of Au/SnO2/n-Si and Al/SnO2/p-Si (MIS) Schottky barrier diodes,” Mater Sci Semicond Process, vol. 13, no. 1, pp. 34–40, 2010.
  • [58] I. Taşçıoğlu, G. Pirgholi-Givi, S. A. Yerişkin, and Y. Azizian-Kalandaragh, “Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4 –PVP interfacial layers,” J Solgel Sci Technol, vol. 107, no. 3, pp. 536–547, 2023.
  • [59] Ç. Ş. Güçlü, “On the impact of pure PVC and (PVC: Ti) interlayer on the conduction mechanisms and physical parameters of classic metal-semiconductor (MS) Schottky diodes (SDs),” Physica B: Condensed Matter, Vol. 689, pp. 416173, 2024.

Kendiliğinden Organize Olan Tek Tabaka Moleküllerin (SAM) Schottky Diyot Performansı Üzerindeki Rolü

Yıl 2025, Cilt: 13 Sayı: 1, 357 - 371, 30.01.2025
https://doi.org/10.29130/dubited.1530876

Öz

Bu çalışma, p-Si/TiO2/SAM/Al yapısına sahip Schottky diyotlarının elektriksel ve yük taşıma özelliklerini incelemektedir. Schottky diyotları, sol-jel yöntemiyle sentezlenen titanyum dioksit (TiO2) tabakasına, kendiliğinden organize olan monolayer (SAM) molekülü olan 4",4" "-[bifenil-4,4-diylbis(fenilimino)]dibifenil-4-karboksilik asit (MZ187) uygulanarak üretilmiştir. MZ187 molekülünün
diyot performansı üzerindeki etkisi, idealite faktörü (n), seri direnci (Rs) ve bariyer yüksekliği (∅b) gibi
parametreler üzerinden değerlendirilmiştir. Deneysel sonuçlar, TiO2 üzerinde monolayer MZ187 kaplamasının diyot performansını önemli ölçüde iyileştirdiğini göstermektedir. Kontrol diyot için 3.7 olan n, MZ187 modifiye diyot için 2.7'ye düşmüştür. Rs, MZ187 nedeniyle azalmış ve ∅b artmıştır. Doğrultma oranı, kontrol diyot için 1.3x102'den MZ187 modifiye diyot için 2.2x103'e yükselmiştir. Bu iyileşmeler, MZ187 moleküllerinin arayüzey durumlarını (Nss) minimize etme ve yüzey özelliklerini geliştirme yeteneğine atfedilmektedir. Bu çalışma, SAM'ların Schottky diyot performansını optimize etmedeki kritik rolünü vurgulamakta ve MZ187 molekülünün arayüzey özelliklerini değiştirerek diyot verimliliğini nasıl iyileştirdiğini göstermektedir. SAM kaplamalarının Schottky diyot performansını artırmadaki etkinliği, nanoelektronik alanına önemli katkılar sağlamaktadır. Bu araştırma, SAM'ların çeşitli nanoelektronik uygulamalarda kullanımına yönelik gelecekteki çalışmalara temel oluşturmakta ve bu teknolojilerin performansını ve güvenilirliğini artırmada umut verici etkiler sunmaktadır.

Kaynakça

  • [1] A. J. King, A. Z. Weber, and A. T. Bell, “Theory and simulation of metal-insulatorsemiconductor (MIS) photoelectrodes,” ACS Appl Mater Interfaces, vol. 15, no. 19, pp. 2302423039, 2023.
  • [2] S. Zeyrek, “The effect of interface states and series resistance on current-voltage characteristics in (MIS) schottky diodes,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 15, no. 2, pp. 1–9, 2015.
  • [3] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices Third Edition, New Jersey, USA, John Wiley & Sons, Inc., 2007, pp. 90-96.
  • [4] Ç. Ş. Güçlü, “A comparison electronic specifications of the ms & mps type Schottky diodes (SDS) via utilizing voltage-current (V-I) characteristics,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 10, no. 1, pp. 62–69, 2023.
  • [5] M. Soylu, I. S. Yahia, F. Yakuphanoglu, and W. A. Farooq, “Modification of electrical properties of al/p-si Schottky barrier device based on 2′-7′-dichlorofluorescein,” J Appl Phys, vol. 110, no. 7, pp. 074514, 2011.
  • [6] S. S. Fouad, G. B. Sakr, I. S. Yahia, D. M. Abdel-Basset, and F. Yakuphanoglu, “Capacitance and conductance characterization of nano-ZnGa 2Te4/n-si diode,” Mater Res Bull, vol. 49, no. 1, pp. 369–383, 2014.
  • [7] Ö. Vural, Y. Şafak, A. Türüt, and Ş. Altindal, “Temperature dependent negative capacitance behavior of Al/rhodamine-101/n- GaAs Schottky barrier diodes and R s effects on the C-V and G/ω-V characteristics,” J Alloys Compd, vol. 513, pp. 107–111, 2012.
  • [8] K. Shili, M. Ben Karoui, R. Gharbi, M. Abdelkrim, M. Fathallah, and S. Ferrero, “Series resistance study of Schottky diodes developed on 4H-SiC wafers using a contact of titanium or molybdenum,” Microelectron Eng, vol. 106, pp. 43–47, 2013.
  • [9] O. Pakma, N. Serin, T. Serin, and Ş. Altndal, “On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TiO2/pSi (MIS) structures,” Physica B Condens Matter, vol. 406, no. 4, pp. 771–776, 2011.
  • [10] Gyanan, S. Mondal, and A. Kumar, “Tunable dielectric properties of TiO2 thin film based MOS systems for application in microelectronics,” Superlattices Microstructures, vol. 100, pp. 876–885, 2016.
  • [11] G. Zerjav, K. Zizek, J. Zavasnik, and A. Pintar, “Brookite vs. rutile vs. anatase: What’s behind their various photocatalytic activities?,” J Environ Chem Eng, vol. 10, no. 3, pp. 107722, 2022.
  • [12] R. Agarwal, Himanshu, S. L. Patel, S. Chander, C. Ameta, and M. S. Dhaka, “Understanding the physical properties of thin TiO2 films treated in different thermal atmospheric conditions,” Vacuum, vol. 177, pp. 109347, 2020.
  • [13] J. Buckeridge et al., “Polymorph engineering of Tio2: demonstrating how absolute reference potentials are determined by local coordination,” Chemistry of Materials, vol. 27, no. 11, pp. 3844–3851, 2015.
  • [14] S.-D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Physical Review B, Vol. 51, no. 19, pp. 13023-13032, 1994.
  • [15] W. Promnopas et al., “Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method,” Surf Coat Technol, vol. 306, pp. 69–74, 2016.
  • [16] D. Bokov et al., “Nanomaterial by sol-gel method: synthesis and application,” Advances in Materials Science and Engineering, Vol. 2021, Issue 1, pp. 5102014, 2021.
  • [17] O. Pakma, N. Serin, T. Serin, and Ş. Altindal, “The double Gaussian distribution of barrier heights in Al/ TiO 2/p-Si (metal-insulator-semiconductor) structures at low temperatures,” J Appl Phys, vol. 104, no. 1, pp. 014501, 2008.
  • [18] B. Kinaci, S. Şebnem Çetin, A. Bengi, and S. Özçelik, “The temperature dependent analysis of Au/TiO2 (rutile)/n-Si (MIS) SBDs using current-voltage-temperature (I-V-T) characteristics,” Mater Sci Semicond Process, vol. 15, no. 5, pp. 531–535, 2012.
  • [19] B. Kinaci, T. Asar, Y. Özen, and S. Özçelik, “The analysis of Au/Ti02/n-Si Schottky barrier diode at high temperatures using I-V characteristics,” Optoelectronics and Advanced Materials-rapid Communications, vol. 5, no. 4, pp. 434–437, 2011.
  • [20] S. B. K Aydin, I. E. Yildiz, and I. Kanbur Çavu, “ALD TiO 2 thin film as dielectric for Al/p-Si Schottky diode,”Bulletin of Materials Science, Vol. 37, pp. 1563-1568, 2014.
  • [21] E. E. Tanrikulu, D. E. Yildiz, A. Günen, and Altindal, “Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes,” Phys Scr, vol. 90, no. 9, pp. 095801, 2015.
  • [22] M. Yilmaz, B. B. Cirak, S. Aydogan, M. L. Grilli, and M. Biber, “Facile electrochemical-assisted synthesis of TiO2 nanotubes and their role in Schottky barrier diode applications,” Superlattices Microstructures, vol. 113, pp. 310–318, 2018.
  • [23] İ. H. Taşdemir, Ö. Vural, and İ. Dökme, “Electrical characteristics of p-Si/TiO2/Al and p-Si/TiO2-Zr/Al Schottky devices,” Philosophical Magazine, vol. 96, no. 16, pp. 1684–1693, 2016.
  • [24] A. Kürşat Bilgili, R. Çağatay, M. K. Öztürk, and M. Özer, “Investigation of electrical and structural properties of Ag/TiO 2 /n-InP/Au Schottky diodes with different thickness TiO 2 interface”, Silicon, Vol. 14, pp. 3013-3018, 2022.
  • [25] B. Y. Tsui, J. C. Cheng, L. S. Lee, C. Y. Lee, and M. J. Tsai, “Schottky barrier height modification of metal/4H-SiC contact using ultrathin TiO2 insertion method,” Japanese Journal of Applied Physics, Vol. 53, pp. 04EP10, 2014.
  • [26] L. B. Taşyürek, “Synthesis of TiO2 nanotubes and photodiode performance,” Türk Doğa ve Fen Dergisi, vol. 12, no. 3, pp. 72–77, 2023.
  • [27] A. M. Nawar, M. Abd-Elsalam, A. M. El-Mahalawy, and M. M. El-Nahass, “Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS-Schottky heterojunction,” Appl Phys A Mater Sci Process, vol. 126, no. 113, 2020.
  • [28] F. Yakuphanoglu, S. Okur, and H. Özgener, “Modification of metal/semiconductor junctions by self-assembled monolayer organic films,” Microelectron Eng, vol. 86, no. 11, pp. 2358–2363, 2009.
  • [29] Z. Çaldıran, “Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure,” J Alloys Compd, vol. 865, pp. 158856, 2021.
  • [30] G. Güler, Ö. Güllü, Ş. Karataş, and Ö. F. Bakkalolu, “Analysis of the series resistance and interface state densities in metal semiconductor structures,” J Phys Conf Ser, vol. 153, pp. 012054, 2009.
  • [31] I. M. Afandiyeva, S. Altιndal, L. K. Abdullayeva, and A. I. Bayramova, “Self-assembled patches in PtSi/n-Si (111) diodes,” Journal of Semiconductors, vol. 39, no. 5, pp. 054002, 2018.
  • [32] M. Can et al., “Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications,” Appl Surf Sci, vol. 314, pp. 1082–1086, 2014.
  • [33] S. Kim and H. Yoo, “Self-assembled monolayers: Versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers,” Micromachines, Vol. 12 (5), pp. 565, 2021.
  • [34] Z. R. Lan, J. Y. Shao, and Y. W. Zhong, “Self-assembled monolayers as hole transporting materials for inverted perovskite solar cells,” Mol. Syst. Des. Eng., Vol. 8, pp. 1440-1455, 2023.
  • [35] S. H. Hsiao, J. X. Wu, and H. I. Chen, “High-selectivity NOx sensors based on an Au/InGaP Schottky diode functionalized with self-assembled monolayer of alkanedithiols,” Sens Actuators B Chem, vol. 305, pp. 127269, 2020.
  • [36] B. De Boer, A. Hadipour, M. M. Mandoc, T. Van Woudenbergh, and P. W. M. Blom, “Tuning of metal work functions with self-assembled monolayers,” Advanced Materials, vol. 17, no. 5, pp. 621–625, 2005.
  • [37] Y. Liu, D. Ji, and W. Hu, “Recent progress of interface self-assembled monolayers engineering organic optoelectronic devices,” DeCarbon, vol. 3, p. 100035, 2024.
  • [38] M. Can and A. K. Havare, “OLED application of π-conjugated phenylimino carboxylic acid organic semiconductor material,” EPJ Applied Physics, vol. 97, no. 33, pp.8, 2022.
  • [39] C. Tozlu, A. Mutlu, M. Can, A. K. Havare, S. Demic, and S. Icli, “Effect of TiO 2 modification with amino-based self-assembled monolayer on inverted organic solar cell,” Appl Surf Sci, vol. 422, pp. 1129–1138, 2017.
  • [40] Western Kern, Handbook of Semiconductor Wafer Cleaning Technology, New Jersey, USA, pp. 253-256, 1993.
  • [41] H. Noh, S. G. Oh, and S. S. Im, “Preparation of anatase TiO 2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells,” Appl Surf Sci, vol. 333, pp. 157–162, 2015.
  • [42] M. Shahiduzzaman et al., “Low-temperature treated anatase TiO2 nanophotonic structured contact design for efficient triple-cation perovskite solar cells,” Chemical Engineering Journal, vol. 426, pp. 131831, 2021.
  • [43] O. Pakma, N. Serin, T. Serin, and Ş. Altndal, “On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TiO2/pSi (MIS) structures,” Physica B Condens Matter, vol. 406, no. 4, pp. 771–776, 2011.
  • [44] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts Second Edition, Clarendon Press, Oxford, pp. 89-109, 1988.
  • [45] B. Akın, M. Ulusoy, and S. Altındal Yerişkin, “Investigation of the interface state characteristics of the Al/Al2O3/Ge/p-Si heterostructure over a wide frequency range by capacitance and conductance measurements,” Mater Sci Semicond Process, vol. 170, pp. 107951, 2024.
  • [46] H. J. Lee, W. A. Anderson, H. Hardtdegen, and H. Lilth, “Barrier height enhancement of Schottky diodes on n- In0.53Ga0.47As by cryogenic processing,” Appl. Phys. Lett., Vol. 63, 1939–1941, 1993.
  • [47] A. D. Marwick, M. O. Aboelfotoh, and R. Casparis, “Increase in Schottky barrier height in the CoSi 2 /Si (100) interface caused by hydrogen.” Mrs Online Proceeding Library, Vol. 281, pp. 629-634, 1992.
  • [48] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl Phys Lett, vol. 49, no. 2, pp. 85–87, 1986.
  • [49] S. Y. Yu, D. C. Huang, Y. L. Chen, K. Y. Wu, and Y. T. Tao, “Approaching charge balance in organic light-emitting diodes by tuning charge injection barriers with mixed monolayers,” Langmuir, vol. 28, no. 1, pp. 424-430, 2012.
  • [50] G. S. Kim, S. H. Kim, J. Park, K. H. Han, J. Kim, and H. Y. Yu, “Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal induced gap states,” ACS Nano, vol. 12, no. 6, pp. 6292–6300, 2018.
  • [51] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J Appl Phys, vol. 50, no. 7, pp. 5052–5053, 1979.
  • [52] G. Çankaya and N. Uçar, “Schottky barrier height dependence on the metal work function for p-type si Schottky diodes,” Z. Naturforsch., Vol. 59a, pp. 795-798, 2004. [53] D. A. Aldemir, A. Kökce, and A. F. Özdemir, “Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması,” SAÜ Fen Bilimleri Enstitüsü Dergisi, Vol. 21, Issue 6, pp. 1286-1292, 2017.
  • [54] S. Hameed, Ö. Berkün, and S. Altındal Yerişkin, “On the voltage dependent series resistance, interface traps, and conduction mechanisms in the Al/(Ti-doped dlc)/p-si/Au Schottky barrier diodes (SBDs),” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 11, no. 1, pp. 235–244, 2024.
  • [55] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys., Vol. 4, pp. 1589, 1971.
  • [56] S. ALTINDAL YERİŞKİN, “Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms(CMs) in the Au/n-Si (MS) structures at room temperature,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no. 2, pp. 835-846, 2019.
  • [57] D. E. Yildiz, Ş. Altindal, Z. Tekeli, and M. Özer, “The effects of surface states and series resistance on the performance of Au/SnO2/n-Si and Al/SnO2/p-Si (MIS) Schottky barrier diodes,” Mater Sci Semicond Process, vol. 13, no. 1, pp. 34–40, 2010.
  • [58] I. Taşçıoğlu, G. Pirgholi-Givi, S. A. Yerişkin, and Y. Azizian-Kalandaragh, “Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4 –PVP interfacial layers,” J Solgel Sci Technol, vol. 107, no. 3, pp. 536–547, 2023.
  • [59] Ç. Ş. Güçlü, “On the impact of pure PVC and (PVC: Ti) interlayer on the conduction mechanisms and physical parameters of classic metal-semiconductor (MS) Schottky diodes (SDs),” Physica B: Condensed Matter, Vol. 689, pp. 416173, 2024.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer), Elektronik, Sensörler ve Dijital Donanım (Diğer), Enerji
Bölüm Makaleler
Yazarlar

Adem Mutlu 0000-0002-1696-4379

Cem Tozlu 0000-0003-4192-5512

Mustafa Can 0000-0002-1749-8293

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 30 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Mutlu, A., Tozlu, C., & Can, M. (2025). The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance. Duzce University Journal of Science and Technology, 13(1), 357-371. https://doi.org/10.29130/dubited.1530876
AMA Mutlu A, Tozlu C, Can M. The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance. DÜBİTED. Ocak 2025;13(1):357-371. doi:10.29130/dubited.1530876
Chicago Mutlu, Adem, Cem Tozlu, ve Mustafa Can. “The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance”. Duzce University Journal of Science and Technology 13, sy. 1 (Ocak 2025): 357-71. https://doi.org/10.29130/dubited.1530876.
EndNote Mutlu A, Tozlu C, Can M (01 Ocak 2025) The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance. Duzce University Journal of Science and Technology 13 1 357–371.
IEEE A. Mutlu, C. Tozlu, ve M. Can, “The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance”, DÜBİTED, c. 13, sy. 1, ss. 357–371, 2025, doi: 10.29130/dubited.1530876.
ISNAD Mutlu, Adem vd. “The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance”. Duzce University Journal of Science and Technology 13/1 (Ocak 2025), 357-371. https://doi.org/10.29130/dubited.1530876.
JAMA Mutlu A, Tozlu C, Can M. The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance. DÜBİTED. 2025;13:357–371.
MLA Mutlu, Adem vd. “The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance”. Duzce University Journal of Science and Technology, c. 13, sy. 1, 2025, ss. 357-71, doi:10.29130/dubited.1530876.
Vancouver Mutlu A, Tozlu C, Can M. The Role of Self-Assembly Monolayers (SAM) on Schottky Diode Performance. DÜBİTED. 2025;13(1):357-71.