Investigation of Corrosion Fatigue Crack Growth in Aluminium Alloy-Based Metal Matrix Composites: A Comparative Study
Yıl 2025,
Cilt: 13 Sayı: 1, 372 - 382, 30.01.2025
İlyas Uygur
,
Hüsnü Gerengi
Öz
The need for high-strength alloys that can withstand the harsh conditions of saline environments is a common challenge in engineering applications. These materials must maintain their structural integrity under corrosive conditions. Corrosion fatigue of aluminium-based composites is an important consideration in the design and use of these materials, as it can significantly reduce the strength and service life of the composite. Corrosion fatigue occurs when a material is repeatedly exposed to a corrosive environment and cyclic loading, leading to the formation of cracks and eventual failure. The susceptibility of aluminium-based composites to corrosion fatigue depends on several factors, including the type and amount of reinforcement used, the composition of the matrix and the specific corrosive environment. It is therefore important that these factors are carefully considered and appropriate testing carried out to ensure the longevity and reliability of the composite in its intended application. In this study, fatigue crack growth tests were carried out at four different stress ratios on 2124-T4 +25% SiCp/Al
composites at room temperature and in a 3.5% salt solution environment. It was found that the influence of the salt solution at low stress ratios was significant on the fatigue crack growth rates. However, the effect of the saline
environment on the fatigue response diminished at high stress ratios.
Destekleyen Kurum
Düzce University
Teşekkür
This scientific study was conducted at the Department of Materials Engineering, University of Wales, Swansea. The author extends sincere gratitude to Prof. Dr. W. J. Evans and Prof. Dr. Martin Bache for their
invaluable help and support. Special thanks are also extended to the "Young Corrosion Team" of Duzce University Corrosion Research Laboratory for their invaluable assistance in drawing the figures.
Kaynakça
- [1] S.K. Pasha, A. Sharma, and P. Tambe, “Mechanical properties and tribological behavior of Al7075 metal matrix composites: A review,” Materials Today: Proceedings, vol. 56, no. 3, pp. 1513-1521, 2022.
- [2] I. Uygur, “Environmentally assisted fatigue response of Al-Cu-Mg-Mn with SiC particulate metal matrix composites,” Ph.D. thesis, University of Wales, SWANSEA, U.K., 1999.
- [3] O. Karpenko, S. Oterkus, and E. Oterkus, “Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach,” International Journal of Fatigue, vol. 162, p. 107023, 2022.
- [4] B. Güney, Y. Dilay, M.M. Solomon, H. Gerengi, A. Özkan, M. Yıldız, “Corrosion characteristics of plasma spray, arc spray, high velocity oxygen fuel, and diamond jet coated 30MnB5 boron alloyed steel in 3.5 wt.% NaCl solution,” Corrosion Reviews, vol. 40, no. 1, pp. 51-63, 2022.
- [5] I. Uygur, A. Cicek, E. Toku, R. Kara, and S. Saridemir, “Fatigue life predictions of metal matrix composites using artificial neural networks,” Archives of Metallurgy and Materials, vol. 59, no. 1, pp. 97-103, 2014.
- [6] I. Uygur, “Notch behavior and fatigue life predictions of discontinuously reinforced MMCs,” Archives of Metallurgy and Materials, vol. 56, no. 1, pp. 109-115, 2011.
- [7] H. Hao, D. Ye, and C. Chen, “Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 Aluminum alloy,” Materials Science & Engineering A, vol. 605, pp. 151-159, 2014.
- [8] I. Uygur, W.J. Evans, M. Bache, and B. Gulenc, “Fatigue behaviour of SiCp reinforced 2124 Aluminium matrix composites,” Metallofizika i Noveishie Tekhnologii, vol. 26, no. 7, pp. 927-939, 2004.
- [9] I. Uygur, “Tensile behaviour of P/M processed (Al-Cu-Mg-Mn) / SiCp composites,” Iranian Journal of Science and Technology, vol. B28, no. B2, pp. 239-248, 2004.
- [10] Z.J. Lu, “Environmetally assisted small crack propagation in an Al-Zn-Mg Alloy” University of Wales, SWANSEA, U.K., 1995.
- [11] J. Llorca, J. Ruiz, J.C. Healy, M. Elices, and C.J. Beevers, “Fatigue crack propagation in salt water, air and high vacuum in a spray-formed particulate-reinforced metal matrix composite,” Materials Science & Engineering A, vol. 185, pp. 1–15, 1994.
- [12] J. Schijve, “Fatigue of structures and materials in the 20th century and the state of the art,” International Journal of Fatigue, vol. 25, pp. 679-702, 2003.
- [13] R.P. Gangloff, R.S. Piascık, D.L. Dicus, and J.C. Newman, “Fatigue crack propagation in aerospace Al- alloys,” Journal of Aircraft, vol. 31, no. 3, pp. 720-725, 1994.
- [14] E.R. De Los Rios, Z.Y. Sun, K.J. Miller, “A theoretical and experimental study of environmental hydrogen-assisted short fatigue crack growth in an Al-Li alloy,” Fatigue and Fracture of Engineering Materials and Structures, vol. 17, no. 12, pp. 1459-1464, 1994.
- [15] R.P. Gangloff, Environmental effect on fatigue crack propagation in Metals Handbook, 9th edt. vol. 8, ASM Ohio, USA, 1985.
- [16] A. Bag, W. Zhou, “Tensile and fatigue behaviour of AZ91D Mg-alloy,” Journal of Materials Science Letters, vol. 20, pp. 457-459, 2001.
- [17] N.E. Co, J.T. Burns, “Effects of micro-scale corrosion damage features and local microstructure on fatigue crack initiation location,” International Journal of Fatigue, vol. 150, p. 106301, 2021.
Alüminyum Alaşımlı Metal Matris Kompozitlerde Korozyon Yorulma Çatlak Büyümesinin İncelenmesi: Karşılaştırmalı Bir Çalışma
Yıl 2025,
Cilt: 13 Sayı: 1, 372 - 382, 30.01.2025
İlyas Uygur
,
Hüsnü Gerengi
Öz
Tuzlu ortamların zorlu koşullarına dayanabilecek yüksek mukavemetli alaşımlara duyulan ihtiyaç, mühendislik uygulamalarında yaygın bir zorluktur. Bu malzemeler korozif koşullar altında yapısal bütünlüklerini korumalıdır. Alüminyum bazlı kompozitlerin korozyon yorgunluğu, kompozitin mukavemetini ve hizmet ömrünü önemli ölçüde azaltabileceğinden, bu malzemelerin tasarımında ve kullanımında önemli bir husustur. Korozyon yorgunluğu, bir malzeme tekrar tekrar korozif bir ortama ve döngüsel yüklemeye maruz kaldığında ortaya çıkar ve çatlak oluşumuna ve nihayetinde malzemenin hasar görmesine yol açar. Alüminyum bazlı kompozitlerin korozyon yorgunluğuna karşı duyarlılığı, kullanılan takviye tipi ve miktarı, matrisin bileşimi ve spesifik aşındırıcı ortam gibi çeşitli faktörlere bağlıdır. Bu nedenle, kompozitin amaçlanan uygulamada uzun ömürlü ve güvenilir olmasını sağlamak için bu faktörlerin dikkatlice değerlendirilmesi ve uygun testlerin yapılması önemlidir. Bu çalışmada, 2124-T4 +%25 SiCp/Al kompozitler üzerinde oda sıcaklığında ve %3.5 tuz çözeltisi ortamında dört farklı gerilme oranında yorulma çatlağı büyüme testleri gerçekleştirilmiştir. Düşük gerilme oranlarında tuz çözeltisinin etkisinin yorulma çatlak büyüme oranları üzerinde önemli olduğu bulunmuştur. Bununla birlikte, tuzlu ortamın yorulma tepkisi üzerindeki etkisi yüksek gerilme oranlarında azalmıştır.
Kaynakça
- [1] S.K. Pasha, A. Sharma, and P. Tambe, “Mechanical properties and tribological behavior of Al7075 metal matrix composites: A review,” Materials Today: Proceedings, vol. 56, no. 3, pp. 1513-1521, 2022.
- [2] I. Uygur, “Environmentally assisted fatigue response of Al-Cu-Mg-Mn with SiC particulate metal matrix composites,” Ph.D. thesis, University of Wales, SWANSEA, U.K., 1999.
- [3] O. Karpenko, S. Oterkus, and E. Oterkus, “Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach,” International Journal of Fatigue, vol. 162, p. 107023, 2022.
- [4] B. Güney, Y. Dilay, M.M. Solomon, H. Gerengi, A. Özkan, M. Yıldız, “Corrosion characteristics of plasma spray, arc spray, high velocity oxygen fuel, and diamond jet coated 30MnB5 boron alloyed steel in 3.5 wt.% NaCl solution,” Corrosion Reviews, vol. 40, no. 1, pp. 51-63, 2022.
- [5] I. Uygur, A. Cicek, E. Toku, R. Kara, and S. Saridemir, “Fatigue life predictions of metal matrix composites using artificial neural networks,” Archives of Metallurgy and Materials, vol. 59, no. 1, pp. 97-103, 2014.
- [6] I. Uygur, “Notch behavior and fatigue life predictions of discontinuously reinforced MMCs,” Archives of Metallurgy and Materials, vol. 56, no. 1, pp. 109-115, 2011.
- [7] H. Hao, D. Ye, and C. Chen, “Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 Aluminum alloy,” Materials Science & Engineering A, vol. 605, pp. 151-159, 2014.
- [8] I. Uygur, W.J. Evans, M. Bache, and B. Gulenc, “Fatigue behaviour of SiCp reinforced 2124 Aluminium matrix composites,” Metallofizika i Noveishie Tekhnologii, vol. 26, no. 7, pp. 927-939, 2004.
- [9] I. Uygur, “Tensile behaviour of P/M processed (Al-Cu-Mg-Mn) / SiCp composites,” Iranian Journal of Science and Technology, vol. B28, no. B2, pp. 239-248, 2004.
- [10] Z.J. Lu, “Environmetally assisted small crack propagation in an Al-Zn-Mg Alloy” University of Wales, SWANSEA, U.K., 1995.
- [11] J. Llorca, J. Ruiz, J.C. Healy, M. Elices, and C.J. Beevers, “Fatigue crack propagation in salt water, air and high vacuum in a spray-formed particulate-reinforced metal matrix composite,” Materials Science & Engineering A, vol. 185, pp. 1–15, 1994.
- [12] J. Schijve, “Fatigue of structures and materials in the 20th century and the state of the art,” International Journal of Fatigue, vol. 25, pp. 679-702, 2003.
- [13] R.P. Gangloff, R.S. Piascık, D.L. Dicus, and J.C. Newman, “Fatigue crack propagation in aerospace Al- alloys,” Journal of Aircraft, vol. 31, no. 3, pp. 720-725, 1994.
- [14] E.R. De Los Rios, Z.Y. Sun, K.J. Miller, “A theoretical and experimental study of environmental hydrogen-assisted short fatigue crack growth in an Al-Li alloy,” Fatigue and Fracture of Engineering Materials and Structures, vol. 17, no. 12, pp. 1459-1464, 1994.
- [15] R.P. Gangloff, Environmental effect on fatigue crack propagation in Metals Handbook, 9th edt. vol. 8, ASM Ohio, USA, 1985.
- [16] A. Bag, W. Zhou, “Tensile and fatigue behaviour of AZ91D Mg-alloy,” Journal of Materials Science Letters, vol. 20, pp. 457-459, 2001.
- [17] N.E. Co, J.T. Burns, “Effects of micro-scale corrosion damage features and local microstructure on fatigue crack initiation location,” International Journal of Fatigue, vol. 150, p. 106301, 2021.