Araştırma Makalesi
BibTex RIS Kaynak Göster

The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator

Yıl 2025, Cilt: 13 Sayı: 3, 1040 - 1056, 31.07.2025
https://doi.org/10.29130/dubited.1549181

Öz

In this study, the conformable fractional Benjamin–Bona–Mahony (BBM) equation is solved by using the conformable q-formable homotopy analysis transform method (Cq-FHATM). This paper presents a practical implementation that demonstrates the possible advantages and effectiveness of the stated approach. In addition, an error analysis is undertaken to validate the scheme's precision. The accuracy of the method in the study is ensured by computational simulations. This study shows the findings obtained from numerical and graphical analysis. It also explains a computationally accurate and simple strategy to understand and solve complex phenomena in science and technology using compatible fractional nonlinear partial differential equations.

Etik Beyan

The authors declare no competing interests.

Kaynakça

  • [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, USA: John Wiley and Sons, 1993, pp. 57-85.
  • [2] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, New York, NY, USA: Academic Press, 1999.
  • [3] S. Alyobi, A. Khan, N. A. Shah, and K. Nonlaopon, “Fractional analysis of nonlinear boussines equation under Atangana-Baleanu-Caputo operatör,” Symmetry, vol 14, pp. 2417, 2022. [4] A. S. Alshehry, R. Shah, and I. Dassios, “A reliable technique for solving fractional partial differential equation,” Axioms, vol 11, pp. 574, 2022.
  • [5] K. Wang, “Fractal traveling wave solutions for the fractional Ablowitz-Kaup-Newell-Segur model,” Fractals, vol. 30, pp. 1–9, 2022.
  • [6] C. H. Chang, “The stability of traveling wave solutions for a diffusive competition system of three species,” Journal of Mathematical Analysis and Applications, vol. 459, pp. 564–576, 2018.
  • [7] H. Güngör, “The efficient method to solve the conformable time fractional Benney equation,” Journal of Mathematics, vol. 2024(1), 3676521, 2024.
  • [8] R. Abu-Gdairi, M. Al-Smadi, and G. Gumah, “An expansion iterative technique for handling fractional differential equations using fractional power series scheme,” Journal of Mathematics and Statistics, vol. 11(2), pp. 29–38, 2015.
  • [9] J. H. He, “Addendum: new interpretation of homotopy perturbation method,” International Journal of Modern Physics B, vol. 20(18), pp. 2561-2568, 2006.
  • [10] A. M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, vol. 102(1), pp. 77-86, 1999.
  • [11] J. H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135(1), pp. 73-79, 2003.
  • [12] H. Anaç, “Conformable fractional Elzaki decomposition method of conformable fractional space-time fractional Telegraph equations,” Ikonion Journal of Mathematics, vol. 4(2), pp. 42-55, 2022.
  • [13] K. Wang, and S. Liu, “A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation,” Springer Plus, vol. 5(1), pp. 865, 2016.
  • [14] J. K. Zhou, Differential transform and its applications for electrical circuits, Wuhan: Huazhong University Press, 1986, pp. 23-57.
  • [15] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65-70, 2014.
  • [16] T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, Vol. 279, pp. 57-66, 2015.
  • [17] D. Kumar, J. Singh, and D. Baleanu, “A new analysis for fractional model of regularized long‐wave equation arising in ion acoustic plasma waves,” Mathematical Methods in the Applied Sciences, vol. 40(15), pp. 5642-5653, 2017.
  • [18] R. Shah, Y. Alkhezi, and K. Alhamad, “An analytical approach to solve the fractional Benjamin-Bona-Mahony equation using the q-homotopy analysis transform method,” Symmetry, vol. 15(3), pp. 669, 2023.
  • [19] V. J. Prajapati, and R. Meher, “Solution of time-fractional Rosenau-Hyman model using a robust homotopy approach via formable transform,” Iranian Journal of Science and Technology, Transactions A: Science, vol. 46(5), pp. 1431-1444, 2022.
  • [20] A. Korkmaz, “Exact solutions to some conformable time fractional equations in Benjamin-Bona-Mahony family. arXiv preprint arXiv:1611.07086, 2016.
  • [21] V. Ala, “New exact solutions of space-time fractional Schrödinger-Hirota equation,” Bulletin of the Karaganda University. Mathematics series, vol. 107(3), pp. 17-24, 2022.
  • [22] A. Alkan, “Analysis of fractional advection equation with improved homotopy analysis method,” Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7(3), pp. 1215-1229, 2024.
  • [23] A. Alkan, “Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 4(2), pp. 117-134, 2022.
  • [24] U. Demirbilek, “On the solitary wave solutions of different versions of fractional 3D-Wazwaz-Benjamin-Bona-Mahony equations,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 22(44), pp. 340-351, 2023.
  • [25] H. Tariq, H. Ashraf, H. Rezazadeh, and U. Demirbilek, “Travelling wave solutions of nonlinear conformable Bogoyavlenskii equations via two powerful analytical approaches,” Applied Mathematics-A Journal of Chinese Universities, vol. 39(3), pp. 502-518, 2024.
  • [26] M. Şenol, M. Gençyiğit, U. Demirbilek, and E. A. Az-Zo’bi, “Sensitivity and wave propagation analysis of the time-fractional (3+1)-dimensional shallow water waves model,” Zeitschrift für angewandte Mathematik und Physik, vol. 75(3), pp. 1-15, 2024.
  • [27] T. Abdeljawad, “On conformable fractional calculus,” Journal of computational and Applied Mathematics, vol. 279, pp. 57-66, 2015.

Uyumlu Kesirli Operatör ile Benjamin-Bona-Mahony Denklemi Üzerine Yeni Bir Çalışma

Yıl 2025, Cilt: 13 Sayı: 3, 1040 - 1056, 31.07.2025
https://doi.org/10.29130/dubited.1549181

Öz

Bu çalışmada, uyumlu kesirli Benjamin-Bona-Mahony (BBM) denklemi, uyumlu q-oluşturulabilir homotopi analiz dönüşümü yöntemi (Cq-FHATM) kullanılarak çözülmüştür. Bu makale, önerilen tekniğin potansiyel faydalarını ve etkinliğini gösteren bir uygulama sunmaktadır. Ek olarak, şemanın hassasiyetini doğrulamak için bir hata analizi yapılmıştır. Çalışmadaki yöntemin doğruluğu, hesaplamalı simülasyonlarla sağlanmıştır. Bu çalışma, sayısal ve grafiksel analizden elde edilen bulguları göstermektedir. Ayrıca, uyumlu kesirli doğrusal olmayan kısmi diferansiyel denklemleri kullanarak bilim ve teknolojideki karmaşık fenomenleri anlamak ve çözmek için hesaplamalı olarak doğru ve basit bir strateji açıklamaktadır.

Etik Beyan

Yazarlar hiçbir rakip çıkar beyan etmemektedir.

Kaynakça

  • [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, USA: John Wiley and Sons, 1993, pp. 57-85.
  • [2] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, New York, NY, USA: Academic Press, 1999.
  • [3] S. Alyobi, A. Khan, N. A. Shah, and K. Nonlaopon, “Fractional analysis of nonlinear boussines equation under Atangana-Baleanu-Caputo operatör,” Symmetry, vol 14, pp. 2417, 2022. [4] A. S. Alshehry, R. Shah, and I. Dassios, “A reliable technique for solving fractional partial differential equation,” Axioms, vol 11, pp. 574, 2022.
  • [5] K. Wang, “Fractal traveling wave solutions for the fractional Ablowitz-Kaup-Newell-Segur model,” Fractals, vol. 30, pp. 1–9, 2022.
  • [6] C. H. Chang, “The stability of traveling wave solutions for a diffusive competition system of three species,” Journal of Mathematical Analysis and Applications, vol. 459, pp. 564–576, 2018.
  • [7] H. Güngör, “The efficient method to solve the conformable time fractional Benney equation,” Journal of Mathematics, vol. 2024(1), 3676521, 2024.
  • [8] R. Abu-Gdairi, M. Al-Smadi, and G. Gumah, “An expansion iterative technique for handling fractional differential equations using fractional power series scheme,” Journal of Mathematics and Statistics, vol. 11(2), pp. 29–38, 2015.
  • [9] J. H. He, “Addendum: new interpretation of homotopy perturbation method,” International Journal of Modern Physics B, vol. 20(18), pp. 2561-2568, 2006.
  • [10] A. M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, vol. 102(1), pp. 77-86, 1999.
  • [11] J. H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135(1), pp. 73-79, 2003.
  • [12] H. Anaç, “Conformable fractional Elzaki decomposition method of conformable fractional space-time fractional Telegraph equations,” Ikonion Journal of Mathematics, vol. 4(2), pp. 42-55, 2022.
  • [13] K. Wang, and S. Liu, “A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation,” Springer Plus, vol. 5(1), pp. 865, 2016.
  • [14] J. K. Zhou, Differential transform and its applications for electrical circuits, Wuhan: Huazhong University Press, 1986, pp. 23-57.
  • [15] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65-70, 2014.
  • [16] T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, Vol. 279, pp. 57-66, 2015.
  • [17] D. Kumar, J. Singh, and D. Baleanu, “A new analysis for fractional model of regularized long‐wave equation arising in ion acoustic plasma waves,” Mathematical Methods in the Applied Sciences, vol. 40(15), pp. 5642-5653, 2017.
  • [18] R. Shah, Y. Alkhezi, and K. Alhamad, “An analytical approach to solve the fractional Benjamin-Bona-Mahony equation using the q-homotopy analysis transform method,” Symmetry, vol. 15(3), pp. 669, 2023.
  • [19] V. J. Prajapati, and R. Meher, “Solution of time-fractional Rosenau-Hyman model using a robust homotopy approach via formable transform,” Iranian Journal of Science and Technology, Transactions A: Science, vol. 46(5), pp. 1431-1444, 2022.
  • [20] A. Korkmaz, “Exact solutions to some conformable time fractional equations in Benjamin-Bona-Mahony family. arXiv preprint arXiv:1611.07086, 2016.
  • [21] V. Ala, “New exact solutions of space-time fractional Schrödinger-Hirota equation,” Bulletin of the Karaganda University. Mathematics series, vol. 107(3), pp. 17-24, 2022.
  • [22] A. Alkan, “Analysis of fractional advection equation with improved homotopy analysis method,” Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7(3), pp. 1215-1229, 2024.
  • [23] A. Alkan, “Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation,” Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, vol. 4(2), pp. 117-134, 2022.
  • [24] U. Demirbilek, “On the solitary wave solutions of different versions of fractional 3D-Wazwaz-Benjamin-Bona-Mahony equations,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 22(44), pp. 340-351, 2023.
  • [25] H. Tariq, H. Ashraf, H. Rezazadeh, and U. Demirbilek, “Travelling wave solutions of nonlinear conformable Bogoyavlenskii equations via two powerful analytical approaches,” Applied Mathematics-A Journal of Chinese Universities, vol. 39(3), pp. 502-518, 2024.
  • [26] M. Şenol, M. Gençyiğit, U. Demirbilek, and E. A. Az-Zo’bi, “Sensitivity and wave propagation analysis of the time-fractional (3+1)-dimensional shallow water waves model,” Zeitschrift für angewandte Mathematik und Physik, vol. 75(3), pp. 1-15, 2024.
  • [27] T. Abdeljawad, “On conformable fractional calculus,” Journal of computational and Applied Mathematics, vol. 279, pp. 57-66, 2015.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hakkı Güngör 0000-0002-9546-665X

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 12 Eylül 2024
Kabul Tarihi 27 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Güngör, H. (2025). The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator. Duzce University Journal of Science and Technology, 13(3), 1040-1056. https://doi.org/10.29130/dubited.1549181
AMA Güngör H. The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator. DÜBİTED. Temmuz 2025;13(3):1040-1056. doi:10.29130/dubited.1549181
Chicago Güngör, Hakkı. “The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator”. Duzce University Journal of Science and Technology 13, sy. 3 (Temmuz 2025): 1040-56. https://doi.org/10.29130/dubited.1549181.
EndNote Güngör H (01 Temmuz 2025) The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator. Duzce University Journal of Science and Technology 13 3 1040–1056.
IEEE H. Güngör, “The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator”, DÜBİTED, c. 13, sy. 3, ss. 1040–1056, 2025, doi: 10.29130/dubited.1549181.
ISNAD Güngör, Hakkı. “The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator”. Duzce University Journal of Science and Technology 13/3 (Temmuz2025), 1040-1056. https://doi.org/10.29130/dubited.1549181.
JAMA Güngör H. The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator. DÜBİTED. 2025;13:1040–1056.
MLA Güngör, Hakkı. “The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator”. Duzce University Journal of Science and Technology, c. 13, sy. 3, 2025, ss. 1040-56, doi:10.29130/dubited.1549181.
Vancouver Güngör H. The Novel Study on the Benjamin–Bona–Mahony Equation with Conformable Fractional Operator. DÜBİTED. 2025;13(3):1040-56.