Araştırma Makalesi
BibTex RIS Kaynak Göster

Geniş Bant ve Geniş Dinamik Giriş Güç Aralığına Sahip Kablosuz Güç Transferi için Çift Dallı Şönt Diyotlu RF Doğrultucu

Yıl 2025, Cilt: 13 Sayı: 4, 1518 - 1527, 30.10.2025
https://doi.org/10.29130/dubited.1657055

Öz

Bu çalışmada geniş bantlı RF enerji hasatlama uygulamaları için çift kollu çift şönt diyotlu bir doğrultucu tasarlanmış ve performansı detaylı olarak incelenmiştir. Önerilen yapı 19 mm × 21 mm boyutlarında kompakt bir tasarıma sahip olup substrat olarak FR4 kullanılmıştır. Gömülü potansiyel gerilimi (Vbi) ve delinme gerilimi (Vbr) kaynaklı kayıpları azaltmak amacıyla, giriş ile yük arasına paralel olarak iki kol içeren bir yapı tasarlanmış ve her kola şönt diyot yerleştirilmiştir. Tasarıma şematik simülasyonun yanı sıra elektromanyetik simülasyon uygulanarak doğrultucunun geniş bantta ve geniş giriş gücü aralığında verimli çalıştığı kanıtlanmıştır. Simülasyon sonuçlarına göre, önerilen doğrultucu 1.6 – 3.4 GHz frekans aralığında %65'in üzerinde bir güç dönüşüm verimliliği (PCE) elde etmektedir. En yüksek PCE değeri ise 2 GHz frekansında ve 10.8 dBm giriş gücü altında %75.23 olarak gözlemlenmiştir. Aynı zamanda önerilen doğrultucu 2 GHz frekansında -1 – 13 dBm giriş gücü aralığında %50’nin üzerinde PCE elde edilmiştir. Mevcut çalışmalarla kıyaslandığında önerilen doğrultucu geniş bant aralığı, geniş giriş gücü aralığı, yüksek güç dönüşüm verimi ve kompakt tasarımıyla öne çıkmaktadır. Bu nedenlerle önerilen çalışmanın düşük güçlü otonom cihazlar için etkili bir alternatif olabileceği değerlendirilmektedir.

Kaynakça

  • Argote-Aguilar, J., Wei, M., Hutu, F., Villemaud, G., Gautier, M., & Berder, O. (2024). Wide power range RF energy harvester for powering ultralow-power devices. IEEE Transactions on Microwave Theory and Techniques, 72(10), 5632–5642. https://doi.org/10.1109/TMTT.2024.3397389
  • Arpanutud, K., Pongthavornkamol, T., Akkaraekthalin, P., & Chalermwisutkul, S. (2024). Design and optimization of single-shunt diode RF rectifier using electromagnetic co-simulation. In Proceedings - 12th International Electrical Engineering Congress: Smart Factory and Intelligent Technology for Tomorrow (iEECON 2024) (pp. 1–4). https://doi.org/10.1109/iEECON60677.2024.10537951
  • Bui, G. T., Nguyen, D. A., & Seo, C. (2023a). A novel design of dual-band inverse class-F shunt-diode rectifier for energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(7), 2345–2349. https://doi.org/10.1109/TCSII.2023.3240501
  • Bui, G. T., Nguyen, D. A., & Seo, C. (2023b). A novel methodology to improve efficiency and extend dynamic range of shunt-diode class-F rectifier for wireless power transfer. IEEE Access, 11, 126643–126649. https://doi.org/10.1109/ACCESS.2023.3331757
  • Cheng, F., Du, C. H., Wu, L., & Gu, C. (2024). Compact and ultra-wideband high-efficiency rectifier using asymmetric coupled-line impedance transformer. International Journal of Microwave and Wireless Technologies, 1–6. https://doi.org/10.1017/S1759078724000813
  • Gyawali, B., Aboualalaa, M., Barakat, A., & Pokharel, R. K. (2024). Design of miniaturized Sub-6 GHz rectifier with self-impedance matching technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 71(7), 3413–3422. https://doi.org/10.1109/TCSI.2024.3397810
  • Halimi, M. A. (2024). A broadband rectifier with high power conversion efficiency and high power handling capability for microwave power transfer applications. In Proceedings of the 2024 IEEE Wireless Antennas and Microwave Symposium (WAMS) (pp. 1–4). https://doi.org/10.1109/WAMS59642.2024.10527855
  • He, Z., & Liu, C. (2020). A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting. IEEE Microwave and Wireless Components Letters, 30(4), 433–436. https://doi.org/10.1109/LMWC.2020.2979711
  • Hirakawa, T., & Shinohara, N. (2021). Theoretical analysis and novel simulation for single shunt rectifiers. IEEE Access, 9, 16615–16622. https://doi.org/10.1109/ACCESS.2021.3053251
  • Jing, J., Yan, L., & Liu, C. (2024). All-polarized wideband rectenna array for omnidirectional wireless energy harvesting. In 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE) (pp. 429–432). https://doi.org/10.1109/WPTCE59894.2024.10557393
  • Joy, J. A., Palaniswamy, S. K., Kumar, S., Kanagasabai, M., Choi, H. C., & Kim, K. W. (2024). Thirty two port super wideband diversity antenna for indoor communications. Scientific Reports, 14(1), Article 25104. https://doi.org/10.1038/s41598-024-76008-6
  • Khodaei, M., Boutayeb, H., & Talbi, L. (2024). A high efficiency and ultra-wideband rectenna for RF energy harvesting application. In 2024 18th European Conference on Antennas and Propagation (EuCAP) (pp. 1–4). https://doi.org/10.23919/EuCAP60739.2024.10501246
  • Lin, Y. L., Zhang, X. Y., Du, Z. X., & Lin, Q. W. (2018). High-efficiency microwave rectifier with extended operating bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 819–823. https://doi.org/10.1109/TCSII.2017.2716538
  • Liu, W., Huang, K., Wang, T., Zhang, Z., & Hou, J. (2020). A broadband high-efficiency RF rectifier for ambient RF energy harvesting. IEEE Microwave and Wireless Components Letters, 30(12), 1185–1188. https://doi.org/10.1109/LMWC.2020.3028607
  • Liu, Y., Liu, W., Yin, D., Wang, T., Huang, X., & Qin, J. (2024). A compact broadband RF rectifier using two-stage microstrip lines. Microwave and Optical Technology Letters, 66(6), 1–6. https://doi.org/10.1002/mop.34225
  • Mansour, M. M., & Kanaya, H. (2018). Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network. IEEE Microwave and Wireless Components Letters, 28(4), 335–337. https://doi.org/10.1109/LMWC.2018.2808419
  • Muhammad, S., Waly, M. I., Mallat, N. K., AlJarallah, N. A., Ghayoula, R., Negm, A. S., Smida, A., & Iqbal, A. (2023). Wideband RF rectifier circuit for low-powered IoT wireless sensor nodes. AEU - International Journal of Electronics and Communications, 170, Article 154787. https://doi.org/10.1016/j.aeue.2023.154787
  • Nguyen, D. A., & Seo, C. (2022). Design of high-efficiency broadband rectifier with harmonic control for wireless power transfer and energy harvesting. IEEE Microwave and Wireless Components Letters, 32(10), 1231–1234. https://doi.org/10.1109/LMWC.2022.3174175
  • Nguyen, D. A., Nam, H., & Seo, C. (2023). Design of compact Class-F high-efficiency shunt-diode rectifier with extended harmonic termination for wireless power transfer. IEEE Microwave and Wireless Technology Letters, 33(1), 78–81. https://doi.org/10.1109/LMWC.2022.3202760
  • Shi, G., Shi, Z., Xia, Y., Jia, S., Xia, H., Shi, M., Sun, Y., Huang, Y., & Wang, B. (2024). A novel high-efficiency portable integrated system for synergistic harvesting of radio frequency and soil energy. Energy Conversion and Management, 313, Article 118594. https://doi.org/10.1016/j.enconman.2024.118594
  • Wang, P. M., Bo, S. F., Ou, J. H., & Zhang, X. Y. (2025). High-efficiency wideband RF rectifier with enhanced dynamic power range based on impedance regulation network. IEEE Microwave and Wireless Technology Letters, 35(3), 306–309. https://doi.org/10.1109/LMWT.2024.3523763
  • Wu, P., Huang, S. Y., Zhou, W., Yu, W., Liu, Z., Chen, X., & Liu, C. (2019). Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(8), 1316–1320. https://doi.org/10.1109/TCSII.2018.2886432
  • Zhang, Z., Zhou, D., Gu, C., & Xuan, X. (2024). A broadband high-efficiency GaN transistor-based rectifier with variable phase shift. IEEE Microwave and Wireless Technology Letters, 34(10), 1198–1201. https://doi.org/10.1109/LMWT.2024.3450594

A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer

Yıl 2025, Cilt: 13 Sayı: 4, 1518 - 1527, 30.10.2025
https://doi.org/10.29130/dubited.1657055

Öz

In this study, a dual-branch, dual-shunt-diode rectifier has been designed and its performance has been thoroughly analyzed for wideband RF energy harvesting applications. The proposed structure features a compact design with dimensions of 19 mm × 21 mm, utilizing FR4 as the substrate. To reduce losses caused by built-in potential (Vbi) and breakdown voltage (Vbr), a dual-branch design was implemented, with each branch incorporating shunt diodes as rectifiers. In addition to schematic simulations, electromagnetic simulations were conducted, demonstrating that the rectifier operates efficiently over a wide bandwidth and a broad input power range. According to simulation results, the proposed rectifier achieves a power conversion efficiency (PCE) exceeding 65% across the 1.6 – 3.4 GHz frequency range, with a peak PCE of 75.23% observed at 2 GHz under an input power of 10.8 dBm. Moreover, at 2 GHz, the rectifier maintains a PCE above 50% over a -1 to 13 dBm input power range. Compared to existing studies, the proposed rectifier stands out due to its wide bandwidth, broad input power range, high power conversion efficiency, and compact design. Therefore, this work presents an effective alternative for low-power autonomous devices.

Etik Beyan

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Kaynakça

  • Argote-Aguilar, J., Wei, M., Hutu, F., Villemaud, G., Gautier, M., & Berder, O. (2024). Wide power range RF energy harvester for powering ultralow-power devices. IEEE Transactions on Microwave Theory and Techniques, 72(10), 5632–5642. https://doi.org/10.1109/TMTT.2024.3397389
  • Arpanutud, K., Pongthavornkamol, T., Akkaraekthalin, P., & Chalermwisutkul, S. (2024). Design and optimization of single-shunt diode RF rectifier using electromagnetic co-simulation. In Proceedings - 12th International Electrical Engineering Congress: Smart Factory and Intelligent Technology for Tomorrow (iEECON 2024) (pp. 1–4). https://doi.org/10.1109/iEECON60677.2024.10537951
  • Bui, G. T., Nguyen, D. A., & Seo, C. (2023a). A novel design of dual-band inverse class-F shunt-diode rectifier for energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(7), 2345–2349. https://doi.org/10.1109/TCSII.2023.3240501
  • Bui, G. T., Nguyen, D. A., & Seo, C. (2023b). A novel methodology to improve efficiency and extend dynamic range of shunt-diode class-F rectifier for wireless power transfer. IEEE Access, 11, 126643–126649. https://doi.org/10.1109/ACCESS.2023.3331757
  • Cheng, F., Du, C. H., Wu, L., & Gu, C. (2024). Compact and ultra-wideband high-efficiency rectifier using asymmetric coupled-line impedance transformer. International Journal of Microwave and Wireless Technologies, 1–6. https://doi.org/10.1017/S1759078724000813
  • Gyawali, B., Aboualalaa, M., Barakat, A., & Pokharel, R. K. (2024). Design of miniaturized Sub-6 GHz rectifier with self-impedance matching technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 71(7), 3413–3422. https://doi.org/10.1109/TCSI.2024.3397810
  • Halimi, M. A. (2024). A broadband rectifier with high power conversion efficiency and high power handling capability for microwave power transfer applications. In Proceedings of the 2024 IEEE Wireless Antennas and Microwave Symposium (WAMS) (pp. 1–4). https://doi.org/10.1109/WAMS59642.2024.10527855
  • He, Z., & Liu, C. (2020). A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting. IEEE Microwave and Wireless Components Letters, 30(4), 433–436. https://doi.org/10.1109/LMWC.2020.2979711
  • Hirakawa, T., & Shinohara, N. (2021). Theoretical analysis and novel simulation for single shunt rectifiers. IEEE Access, 9, 16615–16622. https://doi.org/10.1109/ACCESS.2021.3053251
  • Jing, J., Yan, L., & Liu, C. (2024). All-polarized wideband rectenna array for omnidirectional wireless energy harvesting. In 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE) (pp. 429–432). https://doi.org/10.1109/WPTCE59894.2024.10557393
  • Joy, J. A., Palaniswamy, S. K., Kumar, S., Kanagasabai, M., Choi, H. C., & Kim, K. W. (2024). Thirty two port super wideband diversity antenna for indoor communications. Scientific Reports, 14(1), Article 25104. https://doi.org/10.1038/s41598-024-76008-6
  • Khodaei, M., Boutayeb, H., & Talbi, L. (2024). A high efficiency and ultra-wideband rectenna for RF energy harvesting application. In 2024 18th European Conference on Antennas and Propagation (EuCAP) (pp. 1–4). https://doi.org/10.23919/EuCAP60739.2024.10501246
  • Lin, Y. L., Zhang, X. Y., Du, Z. X., & Lin, Q. W. (2018). High-efficiency microwave rectifier with extended operating bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 819–823. https://doi.org/10.1109/TCSII.2017.2716538
  • Liu, W., Huang, K., Wang, T., Zhang, Z., & Hou, J. (2020). A broadband high-efficiency RF rectifier for ambient RF energy harvesting. IEEE Microwave and Wireless Components Letters, 30(12), 1185–1188. https://doi.org/10.1109/LMWC.2020.3028607
  • Liu, Y., Liu, W., Yin, D., Wang, T., Huang, X., & Qin, J. (2024). A compact broadband RF rectifier using two-stage microstrip lines. Microwave and Optical Technology Letters, 66(6), 1–6. https://doi.org/10.1002/mop.34225
  • Mansour, M. M., & Kanaya, H. (2018). Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network. IEEE Microwave and Wireless Components Letters, 28(4), 335–337. https://doi.org/10.1109/LMWC.2018.2808419
  • Muhammad, S., Waly, M. I., Mallat, N. K., AlJarallah, N. A., Ghayoula, R., Negm, A. S., Smida, A., & Iqbal, A. (2023). Wideband RF rectifier circuit for low-powered IoT wireless sensor nodes. AEU - International Journal of Electronics and Communications, 170, Article 154787. https://doi.org/10.1016/j.aeue.2023.154787
  • Nguyen, D. A., & Seo, C. (2022). Design of high-efficiency broadband rectifier with harmonic control for wireless power transfer and energy harvesting. IEEE Microwave and Wireless Components Letters, 32(10), 1231–1234. https://doi.org/10.1109/LMWC.2022.3174175
  • Nguyen, D. A., Nam, H., & Seo, C. (2023). Design of compact Class-F high-efficiency shunt-diode rectifier with extended harmonic termination for wireless power transfer. IEEE Microwave and Wireless Technology Letters, 33(1), 78–81. https://doi.org/10.1109/LMWC.2022.3202760
  • Shi, G., Shi, Z., Xia, Y., Jia, S., Xia, H., Shi, M., Sun, Y., Huang, Y., & Wang, B. (2024). A novel high-efficiency portable integrated system for synergistic harvesting of radio frequency and soil energy. Energy Conversion and Management, 313, Article 118594. https://doi.org/10.1016/j.enconman.2024.118594
  • Wang, P. M., Bo, S. F., Ou, J. H., & Zhang, X. Y. (2025). High-efficiency wideband RF rectifier with enhanced dynamic power range based on impedance regulation network. IEEE Microwave and Wireless Technology Letters, 35(3), 306–309. https://doi.org/10.1109/LMWT.2024.3523763
  • Wu, P., Huang, S. Y., Zhou, W., Yu, W., Liu, Z., Chen, X., & Liu, C. (2019). Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(8), 1316–1320. https://doi.org/10.1109/TCSII.2018.2886432
  • Zhang, Z., Zhou, D., Gu, C., & Xuan, X. (2024). A broadband high-efficiency GaN transistor-based rectifier with variable phase shift. IEEE Microwave and Wireless Technology Letters, 34(10), 1198–1201. https://doi.org/10.1109/LMWT.2024.3450594
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği, Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Sadik Zuhur 0000-0001-7033-4098

Muhammed Said Boybay Bu kişi benim 0000-0003-0503-2557

Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 13 Mart 2025
Kabul Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Zuhur, S., & Boybay, M. S. (2025). A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer. Duzce University Journal of Science and Technology, 13(4), 1518-1527. https://doi.org/10.29130/dubited.1657055
AMA Zuhur S, Boybay MS. A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer. DÜBİTED. Ekim 2025;13(4):1518-1527. doi:10.29130/dubited.1657055
Chicago Zuhur, Sadik, ve Muhammed Said Boybay. “A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer”. Duzce University Journal of Science and Technology 13, sy. 4 (Ekim 2025): 1518-27. https://doi.org/10.29130/dubited.1657055.
EndNote Zuhur S, Boybay MS (01 Ekim 2025) A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer. Duzce University Journal of Science and Technology 13 4 1518–1527.
IEEE S. Zuhur ve M. S. Boybay, “A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer”, DÜBİTED, c. 13, sy. 4, ss. 1518–1527, 2025, doi: 10.29130/dubited.1657055.
ISNAD Zuhur, Sadik - Boybay, Muhammed Said. “A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer”. Duzce University Journal of Science and Technology 13/4 (Ekim2025), 1518-1527. https://doi.org/10.29130/dubited.1657055.
JAMA Zuhur S, Boybay MS. A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer. DÜBİTED. 2025;13:1518–1527.
MLA Zuhur, Sadik ve Muhammed Said Boybay. “A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer”. Duzce University Journal of Science and Technology, c. 13, sy. 4, 2025, ss. 1518-27, doi:10.29130/dubited.1657055.
Vancouver Zuhur S, Boybay MS. A Dual-Branch Shunt-Diode RF Rectifier with Wideband and Wide Dynamic Input Power Range for Wireless Power Transfer. DÜBİTED. 2025;13(4):1518-27.