BibTex RIS Kaynak Göster

Analysis of Faults In Permanent Magnet Synchronous Motors

Yıl 2017, Cilt: 6 Sayı: 1, 17 - 22, 01.03.2017

Öz

Motor faults are one of the most important factors affecting the performance of an integrated system. It is great importance that the faulty motor is detected at the initial stage and taking precautions is in terms of the continuity of the systems. As a result of late intervention, it can be said that the system can become inoperable as well as the economic losses that can not be compensated. Prediction of the consequences that may occur with the diagnosis of early faults ensures that economic losses are prevented. For these reasons, knowing the types and forms of faults that occur in permanent magnet synchronous motors may be the most important factor in early intervention

Kaynakça

  • 1. C. Ortega, A. Arias, C. Caruana, J. Balcells, and G. M. Asher, “Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2101–2110, 2010.
  • 2. J. Beerten, J. Verveckken, and J. Driesen, “Predictive Direct Torque Control for Flux and Torque Ripple Reduction,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404–412, 2010.
  • 3. R. . Errouissi, M. . Ouhrouche, W.-H. . Chen, and A. M. Trzynadlowski, “Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3078–3088, 2012.
  • 4. K. Raggl, B. Warberger, T. Nussbaumer, S. Burger, and J. W. Kolar, “Robust angle-sensorless control of a PMSM bearingless pump,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2076–2085, 2009.
  • 5. J. R. Riba Ruiz, J. A. Rosero, A. Garcia Espinosa, and L. Romeral, “Detection of demagnetization faults in permanent-Magnet synchronous motors under nonstationary conditions,” IEEE Trans. Magn., vol. 45, no. 7, pp. 2961–2969, 2009.
  • 6. S. Rajagopalan, W. le Roux, T. G. Habetler, and R. G. Harley, “Dynamic Eccentricity and Demagnetized Rotor Magnet Detection in Trapezoidal Flux (Brushless DC) Motors Operating Under Different Load Conditions,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2061–2069, Sep. 2007.
  • 7. Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annu. Rev. Control, vol. 32, no. 2, pp. 229–252, Dec. 2008.
  • 8. P. Poure, P. Weber, D. Theilliol, and S. Saadate, “Fault tolerant control of a three-phase three-wire shunt active filter system based on reliability analysis,” Electr. Power Syst. Res., vol. 79, no. 2, pp. 325–334, Feb. 2009.
  • 9. W. T. Thomson and M. Fenger, “Current signature analysis to detect induction motor faults,” IEEE Ind. Appl. Mag., vol. 7, no. 4, pp. 26–34, 2001.
  • 10. L. Frosini and E. Bassi, “Stator Current and Motor Efficiency as Indicators for Different Types of Bearing Faults in Induction Motors,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 244–251, Jan. 2010.
  • 11. R. N. Andriamalala, H. Razik, L. Baghli, and F.-M. Sargos, “Eccentricity Fault Diagnosis of a Dual-Stator Winding Induction Machine Drive Considering the Slotting Effects,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4238–4251, Dec. 2008.
  • 12. B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, “Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 56, no. 11, 2009.
  • 13. S. Grubic, J. M. Aller, and T. G. Habetler, “A Survey on Testing and Monitoring Methods for Stator Insulation Systems of Low-Voltage Induction Machines Focusing on Turn Insulation Problems,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4127–4136, Dec. 2008.
  • 14. R. M. Tallam, T. G. Habetler, and R. G. Harley, “Transient model for induction machines with stator winding turn faults,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632–637, 2002.
  • 15. K.-H. Kim, B.-G. Gu, and I.-S. Jung, “Online fault-detecting scheme of an inverter-fed permanent magnet synchronous motor under stator winding shorted turn and inverter switch open,” IET Electr. POWER Appl., vol. 5, no. 6, pp. 529–539, 2011.
  • 16. K. C. Kim, S. B. Lim, D. H. Koo, and J. Lee, “The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3485–3487, 2006.
  • 17. R. M. Tallam, T. G. Habetler, and R. G. Harley, “Transient model for induction machines with stator winding turn faults,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632–637, 2002.
  • 18. J. Bockstette, E. Stolz, and E. Wiedenbrug, “Upstream Impedance Diagnostic for Three-Phase Induction Motors,” in 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2007, pp. 411–414.
  • 19. J. Yun, J. Cho, S. Bin Lee, and J. Y. Yoo, “Online detection of high-resistance connections in the incoming electrical circuit for induction motors,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 694–702, 2009.
  • 20. A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 782–790, 2001.
  • 21. S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” in IEEE Transactions on Magnetics, 2006, vol. 42, no. 4, pp. 1335–1338.
  • 22. S. Ruoho, J. Kolehmainen, J. Ikaheimo, and A. Arkkio, “Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor,” IEEE Trans. Magn., vol. 46, no. 3, pp. 949–953, Mar. 2010.
  • 23. P. Zheng, J. Zhao, R. Liu, C. Tong, and Q. Wu, “Magnetic characteristics investigation of an axial-axial flux compound-structure PMSM used for HEVs,” in IEEE Transactions on Magnetics, 2010, vol. 46, no. 6, pp. 2191– 2194.
  • 24. Z. Guoxin, T. Lijian, S. Qiping, and T. Renyuan, “Demagnetization Analysis of Permanent Magnet Synchronous Machines under Short Circuit Fault,” Power Energy Eng. Conf. (APPEEC), 2010 Asia-Pacific, pp. 1–4, 2010.
  • 25. G. H. Kang, J. Hur, H. Nam, J. P. Hong, and G. T. Kim, “Analysis of irreversible magnet demagnetization in linestart motors based on the finite-element method,” IEEE Trans. Magn., vol. 39, no. 3 I, pp. 1488–1491, 2003.
  • 26. S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review,” IEEE Trans. ENERGY Convers., vol. 20, no. 4, 2005.
  • 27. B. M. Ebrahimi and J. Faiz, “Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity,” IET Electr. Power Appl., vol. 4, no. 1, pp. 53–65, 2010.
  • 28. J. Hong, S. Bin Lee, C. Kral, and A. Haumer, “Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2605–2612, 2012.
  • 29. J. Rosero, L. Romeral, E. Rosero, and J. Urresty, “Fault Detection in dynamic conditions by means of Discrete Wavelet Decomposition for PMSM running under Bearing Damage,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 951– 956.
  • 30. J. R. Stack, T. G. Habetler, and R. G. Harley, “Fault classification and fault signature production for rolling element bearings in electric machines,” in IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2003 - Proceedings, 2003, pp. 172–176.
  • 31. J. R. Stack, R. G. Harley, and T. G. Habetler, “An amplitude Modulation detector for fault diagnosis in rolling element bearings,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1097–1102, 2004.
  • 32. J. C. Urresty Betancourt, “Electrical and magnetic faults diagnosis in permanent magnet synchronous motors.” Universitat Politècnica de Catalunya.
  • 33. M. Arkan, H. Çaliş, and M. E. Tağluk, “Bearing and misalignment fault detection in induction motors by using the space vector angular fluctuation signal,” Electr. Eng., vol. 87, no. 4, pp. 197–206, 2005

Sürekli Mıknatıslı Senkron Motorlarda Meydana Gelen Arızaların İncelenmesi

Yıl 2017, Cilt: 6 Sayı: 1, 17 - 22, 01.03.2017

Öz

Motor arızaları, tümleşik bir sistemin performansını etkileyen en önemli faktörlerden biridir. Arızalı motorun arızasının henüz başlangıç aşamasında tespit edilip önlem alınması, sistemlerin devamlılığı açısından büyük önem arz etmektedir. Geç kalınmış bir müdahale sonucu telafisi mümkün olmayan ekonomik kayıplar ortaya çıkabileceği gibi sistemin çalışamaz hale gelmesi de söz konusu olabilmektedir. Erken arıza teşhisi ile ortaya çıkabilecek sonuçların önceden kestirilip tedbir alınması, ekonomik kayıpların da önüne geçilmesini sağlamaktadır. Bu nedenlerden ötürü sürekli mıknatıslı senkron motorlarda meydana gelen arızaların türlerini ve oluş biçimlerini bilmek erken müdahalede en önemli faktör olabilecektir

Kaynakça

  • 1. C. Ortega, A. Arias, C. Caruana, J. Balcells, and G. M. Asher, “Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2101–2110, 2010.
  • 2. J. Beerten, J. Verveckken, and J. Driesen, “Predictive Direct Torque Control for Flux and Torque Ripple Reduction,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404–412, 2010.
  • 3. R. . Errouissi, M. . Ouhrouche, W.-H. . Chen, and A. M. Trzynadlowski, “Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3078–3088, 2012.
  • 4. K. Raggl, B. Warberger, T. Nussbaumer, S. Burger, and J. W. Kolar, “Robust angle-sensorless control of a PMSM bearingless pump,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2076–2085, 2009.
  • 5. J. R. Riba Ruiz, J. A. Rosero, A. Garcia Espinosa, and L. Romeral, “Detection of demagnetization faults in permanent-Magnet synchronous motors under nonstationary conditions,” IEEE Trans. Magn., vol. 45, no. 7, pp. 2961–2969, 2009.
  • 6. S. Rajagopalan, W. le Roux, T. G. Habetler, and R. G. Harley, “Dynamic Eccentricity and Demagnetized Rotor Magnet Detection in Trapezoidal Flux (Brushless DC) Motors Operating Under Different Load Conditions,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2061–2069, Sep. 2007.
  • 7. Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annu. Rev. Control, vol. 32, no. 2, pp. 229–252, Dec. 2008.
  • 8. P. Poure, P. Weber, D. Theilliol, and S. Saadate, “Fault tolerant control of a three-phase three-wire shunt active filter system based on reliability analysis,” Electr. Power Syst. Res., vol. 79, no. 2, pp. 325–334, Feb. 2009.
  • 9. W. T. Thomson and M. Fenger, “Current signature analysis to detect induction motor faults,” IEEE Ind. Appl. Mag., vol. 7, no. 4, pp. 26–34, 2001.
  • 10. L. Frosini and E. Bassi, “Stator Current and Motor Efficiency as Indicators for Different Types of Bearing Faults in Induction Motors,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 244–251, Jan. 2010.
  • 11. R. N. Andriamalala, H. Razik, L. Baghli, and F.-M. Sargos, “Eccentricity Fault Diagnosis of a Dual-Stator Winding Induction Machine Drive Considering the Slotting Effects,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4238–4251, Dec. 2008.
  • 12. B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, “Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 56, no. 11, 2009.
  • 13. S. Grubic, J. M. Aller, and T. G. Habetler, “A Survey on Testing and Monitoring Methods for Stator Insulation Systems of Low-Voltage Induction Machines Focusing on Turn Insulation Problems,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4127–4136, Dec. 2008.
  • 14. R. M. Tallam, T. G. Habetler, and R. G. Harley, “Transient model for induction machines with stator winding turn faults,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632–637, 2002.
  • 15. K.-H. Kim, B.-G. Gu, and I.-S. Jung, “Online fault-detecting scheme of an inverter-fed permanent magnet synchronous motor under stator winding shorted turn and inverter switch open,” IET Electr. POWER Appl., vol. 5, no. 6, pp. 529–539, 2011.
  • 16. K. C. Kim, S. B. Lim, D. H. Koo, and J. Lee, “The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3485–3487, 2006.
  • 17. R. M. Tallam, T. G. Habetler, and R. G. Harley, “Transient model for induction machines with stator winding turn faults,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632–637, 2002.
  • 18. J. Bockstette, E. Stolz, and E. Wiedenbrug, “Upstream Impedance Diagnostic for Three-Phase Induction Motors,” in 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2007, pp. 411–414.
  • 19. J. Yun, J. Cho, S. Bin Lee, and J. Y. Yoo, “Online detection of high-resistance connections in the incoming electrical circuit for induction motors,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 694–702, 2009.
  • 20. A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 782–790, 2001.
  • 21. S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” in IEEE Transactions on Magnetics, 2006, vol. 42, no. 4, pp. 1335–1338.
  • 22. S. Ruoho, J. Kolehmainen, J. Ikaheimo, and A. Arkkio, “Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor,” IEEE Trans. Magn., vol. 46, no. 3, pp. 949–953, Mar. 2010.
  • 23. P. Zheng, J. Zhao, R. Liu, C. Tong, and Q. Wu, “Magnetic characteristics investigation of an axial-axial flux compound-structure PMSM used for HEVs,” in IEEE Transactions on Magnetics, 2010, vol. 46, no. 6, pp. 2191– 2194.
  • 24. Z. Guoxin, T. Lijian, S. Qiping, and T. Renyuan, “Demagnetization Analysis of Permanent Magnet Synchronous Machines under Short Circuit Fault,” Power Energy Eng. Conf. (APPEEC), 2010 Asia-Pacific, pp. 1–4, 2010.
  • 25. G. H. Kang, J. Hur, H. Nam, J. P. Hong, and G. T. Kim, “Analysis of irreversible magnet demagnetization in linestart motors based on the finite-element method,” IEEE Trans. Magn., vol. 39, no. 3 I, pp. 1488–1491, 2003.
  • 26. S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review,” IEEE Trans. ENERGY Convers., vol. 20, no. 4, 2005.
  • 27. B. M. Ebrahimi and J. Faiz, “Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity,” IET Electr. Power Appl., vol. 4, no. 1, pp. 53–65, 2010.
  • 28. J. Hong, S. Bin Lee, C. Kral, and A. Haumer, “Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2605–2612, 2012.
  • 29. J. Rosero, L. Romeral, E. Rosero, and J. Urresty, “Fault Detection in dynamic conditions by means of Discrete Wavelet Decomposition for PMSM running under Bearing Damage,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 951– 956.
  • 30. J. R. Stack, T. G. Habetler, and R. G. Harley, “Fault classification and fault signature production for rolling element bearings in electric machines,” in IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2003 - Proceedings, 2003, pp. 172–176.
  • 31. J. R. Stack, R. G. Harley, and T. G. Habetler, “An amplitude Modulation detector for fault diagnosis in rolling element bearings,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1097–1102, 2004.
  • 32. J. C. Urresty Betancourt, “Electrical and magnetic faults diagnosis in permanent magnet synchronous motors.” Universitat Politècnica de Catalunya.
  • 33. M. Arkan, H. Çaliş, and M. E. Tağluk, “Bearing and misalignment fault detection in induction motors by using the space vector angular fluctuation signal,” Electr. Eng., vol. 87, no. 4, pp. 197–206, 2005
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ferhat Çıra Bu kişi benim

Yayımlanma Tarihi 1 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 6 Sayı: 1

Kaynak Göster

IEEE F. Çıra, “Sürekli Mıknatıslı Senkron Motorlarda Meydana Gelen Arızaların İncelenmesi”, DÜFED, c. 6, sy. 1, ss. 17–22, 2017.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx