BibTex RIS Kaynak Göster

The mineralogy of kyanite quartzite in the Pütürge metamorphites

Yıl 2016, Cilt: 5 Sayı: 3, 109 - 117, 01.11.2016

Öz

The Pütürge metamorphic complex consists of pelit/semi-pelit, pisamite, metagranite, gneiss, amphibolite, quartzite, marble. Mineral paragenesis, the transformation of the garnet mineral advancing on the kyanite- almandine-muscovite and staurolite-almandine sub-facies of the amphibolite facies of the massive to chlorite and biotite minerals along with the transformation of the kyanite mineral to muscovite mineral show that the massive has undergone two retrograde metamorphisms on the greenschist facies. The exhumation process of the rocks is seen as the cause of the retrograde metamorphism. Generally kyanite quartsite consists of 35% SiO2 and 40%Al2O3, Fe2O3, Cr2O3 and rarely CaO, MgO, FeO ve TiO2 . It is closed fault zone or amphibolite and can be lens-shaped, pegmatitic in Pütürge metamorphite. Kyanite quartzite are produced metamorphism of acidic, nötr volcanic and subvolcanic or arc rocks; syn-metamorphism developed with premetamorphism or tectonic factors, metamorphism of high alumina clays, especially insert rock of C, Fe, Al, Mg fluids. In the pressure fluids inserts mineral in the prograd metamorphism and in the mineral are mineralogic-chemical changes. It seen quartz, Mg-syderite, graphite inclusios. It is low K2O from major oxides. Also this are relations rock composition or high serizitization alteration. The high Al and Fe trace element composition of quartz in kyanite quartzite related to inclusion mineral or nature radioactivite of quartz. Because radioactivite is visible into biotite in the pelitic rocks

Kaynakça

  • 1. A.J. Barker. Introduction to Metamorphic Textures and Microstructures. Blackie&Son Limited, New York, 170, (1990).
  • 2. C.J. Wei, G.L., Clarke. Calculated phase equilibria for MORB compositions: a reappraisal of the metamorphic evolution of lawsonit, (2011).
  • 3. D. Castelli, F. Rolfo, R. Compagnoni, & S. Xu, Island Arc, 7, (1998), 159–173.
  • 4. L. Guo, H. F. Zhang, N. Harris, R. R. Parrish, W. C. Zu, Z. L. Shi, Gondwana Research, 21, 100-111, (2012).
  • 5. I. Katayama, S. Nakashima, Am Mineral, 88, 229–234, (2003).
  • 6. Y.M. Sheng, Q.K. Xia, X.Z. Yang, Y.T. Hao, Geochim. Cosmochim. Acta, 71, 2079-2103, ( 2007).
  • 7. W. H. Spence, J. P. Worthington, E. M. Jones, Y.F. Zheng, Chinese Sci. Bull. 54, 4266-4270, (2009).
  • 8. Bolfan-Casanova, N. Min. Mag. 69, 229– 257, (2005).
  • 9. A. Ghera, G. Graziani, and S. Lucchesi, Neues Jahrbuchfuer Minéralogie, Abhandlungen,155, 109-127, (1986).
  • 10. R. L. Rudnick and D. M. Fountain, Reviews of Geophysics, 33, 267-309, (1995).
  • 11. S. Atabek, Gördes mika zuhurları hakkında rapor .M.T.A. Arviş No : 348, (1943).
  • 12. A. Egger, T. Glimmer, feldspar und disthen Vorkommen in Gabiet von Gördes, Manisa: M.T.A. Derleme Rap.No : 2759. (1960).
  • 13. O. Candan ve Ö. Dora, Türkiye Jeoloji Kurumu Bülteni, C. 27, 45 – 56, (1984).
  • 14. G.R. Lumpkin, Journal of Nuclear Materials, 189, 136–166, (2001).
  • 15. A.P. Willner, A. Krohe, W. V. Maresch,Int. Geol. Rev., 42, 64- 85, (2000).
  • 16. W. Schreyer, Pre-or synmetamorphic metasomatism in peraluminous metamorphic rocks. In: helgeson H. C. € Chemical transport in metasomatic processes. Reidel Berlin, 265-296, (1987).
  • 17. W. H. Spence, J. P. Worthington, E. M. I.T. Jones, Kiff, Mining Engineering, 32, 35. R.H.Vernon, Lithos, 12,143-152, (1979).70-73, (1980).
  • 18. E.V. Bibikova, P.M. Ihlen, M. Marker, Age of the hydrothermal alteration leading to garnetite and kyanite psudo- quartzite formation in the Khizovaara segment of the late Archean Keret Greenstone Belt, Russian Karelia. EUG XI Strassbourg, 8- 12.4.2001. Journal of Conference Abstracts 6, 227, (2001).
  • 19. R. Ek, P. Nysten, Phosphate mineralogy of the Halsjöberg and Hökenas kynite deposits. Geoogiska Föreningens i Stockholm, GFF,112, 9-18, (1990).
  • 20. D.Larsson, GFF 123, 237-246, (2001).
  • 21. P. M. Ihlen, and M. Marker, The Ministry of natural resources of Russian Federation Company Mineral, 25-26, (1998).
  • 22. A. K. Banerji, Journal Geological Society of India, 22, 496- 501, (1981).
  • 23. E. Erdem, (1994). Pütürge (Malatya) Metamorfitlerinin petrografik ve etrolojik özellikleri, F.Ü.Fenbilimleri Enstitüsü, Doktora Tezi, 119s.
  • 24. A.D. Kılıç, C. Ateş, Acta Petrologica Sinica, 31(5),1485-93, (2015).
  • 25. A.D. Kılıç, C. Ateş, Turkish Journal of Science & Technology, 9 (2), 127-133, (2014).
  • 26. J. P.Nystuen, Russia Geologiske Undersokelse Bull. 258, 237- 240. (1969a).
  • 27. I. T. Kiff, Mining Engineering 32, 70-73, (1980).
  • 28. J.A. Torrez-ruizza, P.P. Pesquera,Gil- Crespob, N. Velilla, Chem. Geo., 197, 55– 86, (2003).
  • 29. M.A. Çağlayan, R.N. İnal, M. Şengün, and A. Yu r t s e v e r, Structural setting of the Bitlis massive. International Symposium on the Geology of the Taurus Belt, 245- 254, (1984).
  • 30. M.C. Göncüoğlu and N. Turhan, Geology of the Bitlis metamorfik belt. International Symposium on the Geology of the Taurus Belt, 237-244, (1984).
  • 31. M. Şengün, MTA Dergisi,115, 1-13, (1993).
  • 32. C.Winkler, H-GF. Metamorfik kayaçların oluşumu: İ-T.Ü. Müh. Mim. Fak., No : 118-, 223 s.,(1965).
  • 33. S.Vrana, Contr. Mineral. Petrol. 41, 73- 82, (1973).
  • 34. B.W.D. Yardley, Contr. Mineral. Petrol. 65, 53-58, (1977)

Pütürge metamorfitlerindeki distenli kuvartislerin mineralojisi

Yıl 2016, Cilt: 5 Sayı: 3, 109 - 117, 01.11.2016

Öz

Pütürge metamorfitlerinde gözlemlenen kayaçlar, pelit/semi-pelit, pisamit, metagranit, gnays, şist, amfibolit, mermer ve kuvarsit’dir. Mineral parajenezleri, masifin amfibolit fasiyesinin disten- almandin-muskovit ve stavrolit- almandin alt fasiyeslerinde ilerleyen, granat mineralinin klorit ve biyotite dönüşümü, distenin muskovite dönüşümü gibi özelliklerden ise yeşilşist fasiyesinde gerileyen olarak, iki tür metamorfizma geçirmiş olduğunu anlaşılır. Yaklaşık SiO2 %35 ve Al2O3 %40, Fe2O3, Cr2O3 ve az miktarda CaO, MgO, FeO ve TiO2 içeren mercek, damar veya pegmatitik kütleler şeklinde bulunabilen distenli kuvarsitler, Pütürge metamorfitlerinde mikaşistler ve gnayslar içinde, bazı alanlarda ise fay zonlarıyla ilişkili ve amfibolitlere yakın konumda görülür. Distenli kuvarsitler asidik, ortaç volkanik ve subvolkanik kayaçlar veya adayayı derinlik ve volkanitlerinin metamorfizmasıyla ilişkili olabilirler. Metamorfizma öncesi veya yapısal faktörlerin kontrolünde eş zamanlı metamorfizmada, alüminyum içeriği yüksek killerin yükselme sırasında C, Fe, Mg, Al, kısmen Si’ca zengin sulu karbon eriyiğinin, belirli bir basınçta ve ilerleyen metamorfizmada mineral içerisine girmesi sonucu kayaçlarda mineralojik ve kimyasal değişimler meydana gelir. Kayaç içerisinde kuvars, Mg-siderit , grafit gibi kapanım mineralleri gelişir. Disten içeren pelitik kayaçların ana oksitlerinden K2O miktarının düşük olması, köken kayacın bileşimi veya alterasyonun gelişmemiş olmasıyla ilgilidir. Distenlerle birlikte bulunan kuvarsların Al ve Fe içeriklerinin yüksek olması, kapanım minerallerinin türüyle veya kuvarsların metamorfizma sırasında doğal radyoaktiviteye maruz kalmış olmasıyla açıklanabilir. Zira, radyoaktiviteyi pelitler içerisindeki biyotit minerallerinde de görmek mümkündür

Kaynakça

  • 1. A.J. Barker. Introduction to Metamorphic Textures and Microstructures. Blackie&Son Limited, New York, 170, (1990).
  • 2. C.J. Wei, G.L., Clarke. Calculated phase equilibria for MORB compositions: a reappraisal of the metamorphic evolution of lawsonit, (2011).
  • 3. D. Castelli, F. Rolfo, R. Compagnoni, & S. Xu, Island Arc, 7, (1998), 159–173.
  • 4. L. Guo, H. F. Zhang, N. Harris, R. R. Parrish, W. C. Zu, Z. L. Shi, Gondwana Research, 21, 100-111, (2012).
  • 5. I. Katayama, S. Nakashima, Am Mineral, 88, 229–234, (2003).
  • 6. Y.M. Sheng, Q.K. Xia, X.Z. Yang, Y.T. Hao, Geochim. Cosmochim. Acta, 71, 2079-2103, ( 2007).
  • 7. W. H. Spence, J. P. Worthington, E. M. Jones, Y.F. Zheng, Chinese Sci. Bull. 54, 4266-4270, (2009).
  • 8. Bolfan-Casanova, N. Min. Mag. 69, 229– 257, (2005).
  • 9. A. Ghera, G. Graziani, and S. Lucchesi, Neues Jahrbuchfuer Minéralogie, Abhandlungen,155, 109-127, (1986).
  • 10. R. L. Rudnick and D. M. Fountain, Reviews of Geophysics, 33, 267-309, (1995).
  • 11. S. Atabek, Gördes mika zuhurları hakkında rapor .M.T.A. Arviş No : 348, (1943).
  • 12. A. Egger, T. Glimmer, feldspar und disthen Vorkommen in Gabiet von Gördes, Manisa: M.T.A. Derleme Rap.No : 2759. (1960).
  • 13. O. Candan ve Ö. Dora, Türkiye Jeoloji Kurumu Bülteni, C. 27, 45 – 56, (1984).
  • 14. G.R. Lumpkin, Journal of Nuclear Materials, 189, 136–166, (2001).
  • 15. A.P. Willner, A. Krohe, W. V. Maresch,Int. Geol. Rev., 42, 64- 85, (2000).
  • 16. W. Schreyer, Pre-or synmetamorphic metasomatism in peraluminous metamorphic rocks. In: helgeson H. C. € Chemical transport in metasomatic processes. Reidel Berlin, 265-296, (1987).
  • 17. W. H. Spence, J. P. Worthington, E. M. I.T. Jones, Kiff, Mining Engineering, 32, 35. R.H.Vernon, Lithos, 12,143-152, (1979).70-73, (1980).
  • 18. E.V. Bibikova, P.M. Ihlen, M. Marker, Age of the hydrothermal alteration leading to garnetite and kyanite psudo- quartzite formation in the Khizovaara segment of the late Archean Keret Greenstone Belt, Russian Karelia. EUG XI Strassbourg, 8- 12.4.2001. Journal of Conference Abstracts 6, 227, (2001).
  • 19. R. Ek, P. Nysten, Phosphate mineralogy of the Halsjöberg and Hökenas kynite deposits. Geoogiska Föreningens i Stockholm, GFF,112, 9-18, (1990).
  • 20. D.Larsson, GFF 123, 237-246, (2001).
  • 21. P. M. Ihlen, and M. Marker, The Ministry of natural resources of Russian Federation Company Mineral, 25-26, (1998).
  • 22. A. K. Banerji, Journal Geological Society of India, 22, 496- 501, (1981).
  • 23. E. Erdem, (1994). Pütürge (Malatya) Metamorfitlerinin petrografik ve etrolojik özellikleri, F.Ü.Fenbilimleri Enstitüsü, Doktora Tezi, 119s.
  • 24. A.D. Kılıç, C. Ateş, Acta Petrologica Sinica, 31(5),1485-93, (2015).
  • 25. A.D. Kılıç, C. Ateş, Turkish Journal of Science & Technology, 9 (2), 127-133, (2014).
  • 26. J. P.Nystuen, Russia Geologiske Undersokelse Bull. 258, 237- 240. (1969a).
  • 27. I. T. Kiff, Mining Engineering 32, 70-73, (1980).
  • 28. J.A. Torrez-ruizza, P.P. Pesquera,Gil- Crespob, N. Velilla, Chem. Geo., 197, 55– 86, (2003).
  • 29. M.A. Çağlayan, R.N. İnal, M. Şengün, and A. Yu r t s e v e r, Structural setting of the Bitlis massive. International Symposium on the Geology of the Taurus Belt, 245- 254, (1984).
  • 30. M.C. Göncüoğlu and N. Turhan, Geology of the Bitlis metamorfik belt. International Symposium on the Geology of the Taurus Belt, 237-244, (1984).
  • 31. M. Şengün, MTA Dergisi,115, 1-13, (1993).
  • 32. C.Winkler, H-GF. Metamorfik kayaçların oluşumu: İ-T.Ü. Müh. Mim. Fak., No : 118-, 223 s.,(1965).
  • 33. S.Vrana, Contr. Mineral. Petrol. 41, 73- 82, (1973).
  • 34. B.W.D. Yardley, Contr. Mineral. Petrol. 65, 53-58, (1977)
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Filiz Güngör Bu kişi benim

Yayımlanma Tarihi 1 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 5 Sayı: 3

Kaynak Göster

IEEE F. Güngör, “Pütürge metamorfitlerindeki distenli kuvartislerin mineralojisi”, DÜFED, c. 5, sy. 3, ss. 109–117, 2016.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx