BibTex RIS Kaynak Göster

C4.5 Karar Ağaçlarında Genetik Algoritma ile Budama

Yıl 2016, Cilt: 5 Sayı: 2, 77 - 80, 01.07.2016

Öz

Decision tree is a machine learning algorithm that is used for classification and regression. Many approaches were proposed to build decision trees. C4.5 decision tree that is one of these approaches, is frequently used in many fields. Large number of attributes of the data set that is used for building decision tree causes unnecessary branches and nodes on decision tree. Unnecessary branches and nodes cause overfitting. Overfitting negatively affects classification success rate. In this paper, a novel pruning algorithm is proposed to reduce the effects of overfitting. Successful results were obtained by optimizing confidence factor CF of C4.5 algorithm executed in Weka using genetic algorithm

Kaynakça

  • J. R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann, 1993.
  • J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81-106, 1986.
  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth International, Belmont.
  • Niblett T, Bratko I (1986) Learning decision rules in noisy domains. In: Proceedings of expert systems’86. Cambridge University Press, New York, pp 25–34.
  • J. R. Quinlan, “Simplifying decision trees,” Int. J. Hum.- Comput. Stud, vol. 51, pp. 497-510, 1999.
  • Jie Chen, Xizhao Wang, Junhai Zhai, “Pruning Decision Tree Using Genetic Algorithms” International Conference on Artificial Intelligence and Computational Intelligence, 2019, pp 244–248.
  • Esposito F, Malerba D, Semeraro G (1997) A comparative analysis of methods for pruning decision trees. IEEE Trans Pattern Anal Mach Intell 19(5):476–491.
  • T. Kavzaoğlu, İ. Çölkesen, “Karar Ağaçları İle Uydu Görüntülerinin Sınıflandırılması: Kocaeli Örneği”,Harita Teknolojileri Elektronik Dergisi , vol. 2, no:1, pp. 36-45, 2010.
  • Quinlan J.R., 1987, “Simplifying decision trees”, International Journal of Man-Machine Studies, 27, 221- 234.
  • I.B. Aydilek, A. Arslan, A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm, Information Sciences 233 (2013) 25–35.
  • T. Marwala, S. Chakraverty, Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm, Curr. Sci. India 90 (2006) 542–548.
  • Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

C4.5 Decision Tree Pruning Using Genetic Algorithm

Yıl 2016, Cilt: 5 Sayı: 2, 77 - 80, 01.07.2016

Öz

Karar ağaçları sınıflandırma ve değer tahmini amacıyla kullanılan makina öğrenme algoritmalarından biridir. Karar ağaçlarını oluşturmak amacıyla birçok yaklaşım önerilmiştir. Bu yaklaşımlardan biri olan C4.5 karar ağaçları metodu birçok alanda sıklıkla kullanılmaktadır. Ağaç yapısını kurmada kullanılacak veri setinin nitelik sayısının fazla olması, ağaç yapısında gereksiz dallar ve düğüm noktalarına sebep olmaktadır. Bunun sonucunda gereksiz oluşturulan dallar ve düğüm noktaları aşırı öğrenmeye, aşırı öğrenme ise sınıflandırma başarı oranını olumsuz yönde etkilemektedir. Bu çalışmada aşırı öğrenmenin etkilerini azaltmak için yeni bir budama algoritması önerilmiştir. WEKA ortamında çalıştırılan C4.5 algoritmasının Güven Faktörü Confidence Factor genetik algoritma ile optimize edilerek başarılı sonuçlar elde edilmiştir

Kaynakça

  • J. R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann, 1993.
  • J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81-106, 1986.
  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth International, Belmont.
  • Niblett T, Bratko I (1986) Learning decision rules in noisy domains. In: Proceedings of expert systems’86. Cambridge University Press, New York, pp 25–34.
  • J. R. Quinlan, “Simplifying decision trees,” Int. J. Hum.- Comput. Stud, vol. 51, pp. 497-510, 1999.
  • Jie Chen, Xizhao Wang, Junhai Zhai, “Pruning Decision Tree Using Genetic Algorithms” International Conference on Artificial Intelligence and Computational Intelligence, 2019, pp 244–248.
  • Esposito F, Malerba D, Semeraro G (1997) A comparative analysis of methods for pruning decision trees. IEEE Trans Pattern Anal Mach Intell 19(5):476–491.
  • T. Kavzaoğlu, İ. Çölkesen, “Karar Ağaçları İle Uydu Görüntülerinin Sınıflandırılması: Kocaeli Örneği”,Harita Teknolojileri Elektronik Dergisi , vol. 2, no:1, pp. 36-45, 2010.
  • Quinlan J.R., 1987, “Simplifying decision trees”, International Journal of Man-Machine Studies, 27, 221- 234.
  • I.B. Aydilek, A. Arslan, A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm, Information Sciences 233 (2013) 25–35.
  • T. Marwala, S. Chakraverty, Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm, Curr. Sci. India 90 (2006) 542–548.
  • Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Abdülkadir Gümüşçü Bu kişi benim

Ramazan Taşaltın Bu kişi benim

İbrahim Berkan Aydilek Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE A. Gümüşçü, R. Taşaltın, ve İ. B. Aydilek, “C4.5 Decision Tree Pruning Using Genetic Algorithm”, DÜFED, c. 5, sy. 2, ss. 77–80, 2016.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx