Strength Development of Heat Cured and Ambient Cured Sodium Hydroxide Activated Fly Ash Based Geopolymer
Yıl 2020,
Cilt: 9 Sayı: 2, 79 - 88, 31.12.2020
Cengiz Atiş
,
Omeed Adwal Ali Ali
,
Uğur Durak
,
Serhan İlkentapar
,
Okan Karahan
Öz
Compressive strength development of class F fly ash geopolymer activated by sodium hydroxide was compared between initial heat curing at 75ºC for 24 hours and the ambient medium. Class F geopolymeric mortar was produced with standard Rilem sand, sodium hydroxide, and water. Mortar mixtures ratios were 3, 1, and 0.288 for sand, fly ash, and water, respectively. Some samples were cured in laboratory conditions; some samples were heat cured for 24 hours at 75ºC. Ambient curing medium result with non-measurable low compressive strength up to 7 days, however significant strength development observed in longer curing time up to six months. Heat curing developed higher strength at all times than ambient curing did. It was concluded that heat cured geopolymer samples could be utilized in construction materials, while utilization of non-heat cured samples was not practical due to its longer curing duration needs.
Kaynakça
- A. M. M. Al Bakria, H. Kamarudin, M. Bin Hussain, I.K. Nizar, Y. Zarina, A.R. Rafiza, ‘‘The Effect of Curing Temperature on Physical and Chemical Properties of Geopolymers’’, Physics Procedia, vol. 22, 2011
- A.S. de Vargas, D.C.C. Dal Molin, A.C.F. Vilela, F.J. Da Silva, B. Pavao, H. Veit, ‘‘The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers.’’ Cement & Concrete Composites, vol. 33, no.6, 2011.
- J.C. Swanepoel, C.A. Strydom, ‘‘Utilisation of fly ash in a geopolymeric material’’, Applied Geochemistry, vol. 17, no.8, 2002.
- M, Bing-hui, H. Zhu, C. Xue-min, H. Yan, G. Si-yu, ‘‘Effect of curing temperature on geopolymerization of metakaolin-based geopolymers’’, Applied Clay Science, vol.99, 2014.
- J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, ‘‘The characterisation of source materials in fly ash-based geopolymers’’, Materials Letters, vol. 57, no.7, 2003.
- K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt., ‘‘NaOH-activated ground fly ash geopolymer cured at ambient temperature’’, Fuel, vol. 90, no.6, 2011.
- U. Rattanasak, P. Chindaprasirt, ‘‘Influence of NaOH solution on the synthesis of fly ash geopolymer’’, Minerals Engineering, vol. 22, no.12, 2009.
- D.L.Y. Kong, J.G. Sanjayan, ‘‘Effect of elevated temperatures on geopolymer paste, mortar and concrete’’, Cement and Concrete Research, vol. 40, no.2, 2010.
- P. Sukmak, S. Horpibulsuk, S.L. Shen, P. Chindaprasirt, C. Suksiripattanapong, ‘‘Factors influencing strength development in clay–fly ash geopolymer’’, Construction and Building Materials, vol. 47, 2013.
- C.D. Atiş, E.B. Görür, O. Karahan, C. Bilim, S. İlkentapar, E Luga., ‘‘Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration’’, Construction and Building Materials, vol.96, 2015.
- W. Jiang and D.M. Roy, ‘‘Hydrothermal processing of new fly ash cement.’’ Ceramic Bulletin, vol. 71, no.4, 1992.
- M. Komljenovic, Z. Bascarevic, V. Bradic, ‘‘Mechanical and microstructural properties of alkali-activated fly ash Geopolymers, Journal of Hazardous Materials’’, vol. 181, no.1-3, 2010.
- P. Chindaprasirt, U. Rattanasak, S. Taebuanhuad, ‘‘Role of microwave radiation in curing the fly ash geopolymer’’, Advanced Powder Technology, vol. 24, 2013.
- D. Ravikumar, S. Peethamparan, N. Neithalath, ‘‘Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder’’, Cement & Concrete Composites, vol.32, no.6, 2010.
- G. Gorhan, G. Kurklu, ‘‘The influence of the NaOH solution on the properties of the fly ash-based geoploymer mortar cured at different temperatures’’, Composites: Part B, vol. 58, 2014.
- J. Somaratna, D. Ravikumar, N. Neithalath, ‘‘Response of alkali activated fly ash mortars to microwave curing’’, Cement and Concrete Research, vol. 40, no.12, 2010.
- E.B. Görür, ‘‘Alkali ile aktifleştirilmiş uçucu kül geopolimer betonunun dayanım ve durabilite özelliklerinin araştırılması’’, Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 2015.
- D. Hardjito, S.E. Wallah, D.M.J Sumajouw, and B.V. Rangan, ‘‘On the Development of Fly Ash-Based Geopolymer Concrete’’, ACI Material Journal, vol. 101, no.6, 2004.
- N. Lloyd, and V. Rangan, ‘‘Geopolymer Concrete—Sustainable Cementless Concrete’’, ACI Special Publication SP-261, 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues, American Concrete Institute, Farmington Hills, MI., 2009.
- M.Olivia, H. Nikraz , ‘‘Properties of fly ash geopolymer concrete designed by Taguchi method’’, Materials and Design, vol. 36, 2012.
- G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, ‘‘The mechanical properties of fly ash-based geopolymer concrete with alkaline activators‘‘, Construction and Building Materials, vol. 47, 2013.
- P.R. Vora, U.V. Dave, ‘‘Parametric Studies on Compressive Strength of Geopolymer Concrete’’, Procedia Engineering, vol. 51, 2013.
- A.S. de Vargas, D.C.C. Dal Molin, A.B. Masuero, A.C.F. Vilela, J. Castro-Gomes, R.M. de Gutierrez, ‘‘Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators’’, Cement & Concrete Composites, vol. 53, 2014.
- F. Skvara, L. Kopecky, V. Smilauer, Z. Bittnar, ‘‘Material and structural characterization of alkali activated low-calcium brown coal fly ash’’, Journal of Hazardous Materials, vol. 168, no.2-3,2009.
- E.Arioz, O. Arioz., O.M. Kockar, ‘‘An experimental study on the mechanical and microstructural properties of geopolymers’’, Procedia Engineering, vol. 42, 2012.
- TS EN 450-1, ‘‘Uçucu Kül – Betonda kullanılan- Bölüm 1: Tarif, özellikler ve uygunluk kriterleri’’, (2013). Türk Standartları Enstitüsü, Ankara, (Erişim tarihi: 06.11.2019).
- ASTM C618, ‘‘Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete’’, Annual Book of ASTM Standarts. 2012.
- TS EN 1015-11, ‘‘Mortar Testing Method, Part 11. Measurement of Compressive and Flexural Tensile Strength of Mortar’’, (2000). TSE, Ankara (Erişim tarihi: 06.11.2019).
Sodyum Hidroksit ile Aktifleştirilmiş Uçucu Kül Bazlı Geopolimerlerin Isıl Kür ve Ortam Küründe Dayanım Gelişimi
Yıl 2020,
Cilt: 9 Sayı: 2, 79 - 88, 31.12.2020
Cengiz Atiş
,
Omeed Adwal Ali Ali
,
Uğur Durak
,
Serhan İlkentapar
,
Okan Karahan
Öz
Sodyum hidroksit ile aktifleştirilmiş F sınıfı uçucu kül geopolimerinin basınç dayanımı gelişimi, 75ºC'de 24 saatlik ilk ısıl kürleme ile laboratuvar ortamı arasında karşılaştırılmıştır. F sınıfı geopolimerik harç, standart Rilem kumu, sodyum hidroksit ve su kullanılarak üretilmiştir. Harç karışım oranları kum, uçucu kül ve su için sırasıyla 3, 1 ve 0.288 olarak kullanılmıştır. Üretilen numunelerin laboratuvar ortamında ve 75ºC'de 24 saat ısıda ayrı ayrı bekletilerek kür edilmiştir. Ortam şartlarında bekletilen numunelerde 7 güne kadar ölçülemeyen düşük basınç dayanımları elde edilmiştir. Ancak altı aya kadar daha uzun kürleme süresinde önemli bir dayanım gelişimi gözlenmiştir. Isı ortamında kürlenen numuneler her zaman ortam kürüne göre daha yüksek dayanım sonuçları vermiştir. Isı ile kürlenen geopolimer numunelerin inşaat malzemelerinde kullanılabileceği, ısı ile kürlenmemiş numunelerin kullanımının ise daha uzun kürlenme süresi ihtiyaçları nedeniyle pratik olmadığı sonucuna varılmıştır.
Kaynakça
- A. M. M. Al Bakria, H. Kamarudin, M. Bin Hussain, I.K. Nizar, Y. Zarina, A.R. Rafiza, ‘‘The Effect of Curing Temperature on Physical and Chemical Properties of Geopolymers’’, Physics Procedia, vol. 22, 2011
- A.S. de Vargas, D.C.C. Dal Molin, A.C.F. Vilela, F.J. Da Silva, B. Pavao, H. Veit, ‘‘The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers.’’ Cement & Concrete Composites, vol. 33, no.6, 2011.
- J.C. Swanepoel, C.A. Strydom, ‘‘Utilisation of fly ash in a geopolymeric material’’, Applied Geochemistry, vol. 17, no.8, 2002.
- M, Bing-hui, H. Zhu, C. Xue-min, H. Yan, G. Si-yu, ‘‘Effect of curing temperature on geopolymerization of metakaolin-based geopolymers’’, Applied Clay Science, vol.99, 2014.
- J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, ‘‘The characterisation of source materials in fly ash-based geopolymers’’, Materials Letters, vol. 57, no.7, 2003.
- K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt., ‘‘NaOH-activated ground fly ash geopolymer cured at ambient temperature’’, Fuel, vol. 90, no.6, 2011.
- U. Rattanasak, P. Chindaprasirt, ‘‘Influence of NaOH solution on the synthesis of fly ash geopolymer’’, Minerals Engineering, vol. 22, no.12, 2009.
- D.L.Y. Kong, J.G. Sanjayan, ‘‘Effect of elevated temperatures on geopolymer paste, mortar and concrete’’, Cement and Concrete Research, vol. 40, no.2, 2010.
- P. Sukmak, S. Horpibulsuk, S.L. Shen, P. Chindaprasirt, C. Suksiripattanapong, ‘‘Factors influencing strength development in clay–fly ash geopolymer’’, Construction and Building Materials, vol. 47, 2013.
- C.D. Atiş, E.B. Görür, O. Karahan, C. Bilim, S. İlkentapar, E Luga., ‘‘Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration’’, Construction and Building Materials, vol.96, 2015.
- W. Jiang and D.M. Roy, ‘‘Hydrothermal processing of new fly ash cement.’’ Ceramic Bulletin, vol. 71, no.4, 1992.
- M. Komljenovic, Z. Bascarevic, V. Bradic, ‘‘Mechanical and microstructural properties of alkali-activated fly ash Geopolymers, Journal of Hazardous Materials’’, vol. 181, no.1-3, 2010.
- P. Chindaprasirt, U. Rattanasak, S. Taebuanhuad, ‘‘Role of microwave radiation in curing the fly ash geopolymer’’, Advanced Powder Technology, vol. 24, 2013.
- D. Ravikumar, S. Peethamparan, N. Neithalath, ‘‘Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder’’, Cement & Concrete Composites, vol.32, no.6, 2010.
- G. Gorhan, G. Kurklu, ‘‘The influence of the NaOH solution on the properties of the fly ash-based geoploymer mortar cured at different temperatures’’, Composites: Part B, vol. 58, 2014.
- J. Somaratna, D. Ravikumar, N. Neithalath, ‘‘Response of alkali activated fly ash mortars to microwave curing’’, Cement and Concrete Research, vol. 40, no.12, 2010.
- E.B. Görür, ‘‘Alkali ile aktifleştirilmiş uçucu kül geopolimer betonunun dayanım ve durabilite özelliklerinin araştırılması’’, Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 2015.
- D. Hardjito, S.E. Wallah, D.M.J Sumajouw, and B.V. Rangan, ‘‘On the Development of Fly Ash-Based Geopolymer Concrete’’, ACI Material Journal, vol. 101, no.6, 2004.
- N. Lloyd, and V. Rangan, ‘‘Geopolymer Concrete—Sustainable Cementless Concrete’’, ACI Special Publication SP-261, 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues, American Concrete Institute, Farmington Hills, MI., 2009.
- M.Olivia, H. Nikraz , ‘‘Properties of fly ash geopolymer concrete designed by Taguchi method’’, Materials and Design, vol. 36, 2012.
- G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, ‘‘The mechanical properties of fly ash-based geopolymer concrete with alkaline activators‘‘, Construction and Building Materials, vol. 47, 2013.
- P.R. Vora, U.V. Dave, ‘‘Parametric Studies on Compressive Strength of Geopolymer Concrete’’, Procedia Engineering, vol. 51, 2013.
- A.S. de Vargas, D.C.C. Dal Molin, A.B. Masuero, A.C.F. Vilela, J. Castro-Gomes, R.M. de Gutierrez, ‘‘Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators’’, Cement & Concrete Composites, vol. 53, 2014.
- F. Skvara, L. Kopecky, V. Smilauer, Z. Bittnar, ‘‘Material and structural characterization of alkali activated low-calcium brown coal fly ash’’, Journal of Hazardous Materials, vol. 168, no.2-3,2009.
- E.Arioz, O. Arioz., O.M. Kockar, ‘‘An experimental study on the mechanical and microstructural properties of geopolymers’’, Procedia Engineering, vol. 42, 2012.
- TS EN 450-1, ‘‘Uçucu Kül – Betonda kullanılan- Bölüm 1: Tarif, özellikler ve uygunluk kriterleri’’, (2013). Türk Standartları Enstitüsü, Ankara, (Erişim tarihi: 06.11.2019).
- ASTM C618, ‘‘Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete’’, Annual Book of ASTM Standarts. 2012.
- TS EN 1015-11, ‘‘Mortar Testing Method, Part 11. Measurement of Compressive and Flexural Tensile Strength of Mortar’’, (2000). TSE, Ankara (Erişim tarihi: 06.11.2019).