Araştırma Makalesi
BibTex RIS Kaynak Göster

Gerçek Hayat Verileriyle Makine Öğrenmesi Algoritmalarına Dayalı Otobüs Durak Süresi Tahmini

Yıl 2022, , 421 - 428, 30.09.2022
https://doi.org/10.24012/dumf.1120379

Öz

Toplu taşıma sistemleri, gelişmekte olan ülkelerde ve nüfus yoğunluğunun yüksek olduğu bölgelerde büyük bir önem arz etmektedir. Yüksek popülasyona sahip şehirlerde kent içi aktif ulaşım süreçlerinin ve buna yönelik ihtiyaçların giderek yoğunlaştığı gözlemlenmektedir. Bu gereksinimden doğan araç sayısı fazlalığı ve yoğun trafik, büyük bir zaman dilimini kapsayarak günlük yaşantımızın önemli bir parçası haline gelmiştir. Bu sebeple ulaşım sistemleri yönetimi, toplu taşımacılık planlaması, planlamaların sürekli revize halinde olması ve kontrolü, kalabalık kentlerdeki günlük hayat akışında en önemli ihtiyaçlardan biridir. Bu çalışma, karayolu toplu taşımada kilit nokta olan otobüs verilerine dayanmaktadır. Çalışmanın amacı, İstanbul’da belirli bir hatta yapılan seferlerin yolculuk süre verilerinin analizi, duraklar arası sürenin ve durağa varış saati verilerinin analiz edilmesi ve gelecek günlere yönelik tahmin yapılmasıdır. Çalışma sırasında analiz edilen 522B hattı gidiş yönü verilerin tamamı gerçek verilerdir. Bu güzergaha ait veri seti 2021 yılının Temmuz ve Ağustos ayları bazında incelenmiştir. Makine öğrenmesi algoritmalarından Yapay Sinir Ağları (YSA) ve Destek Vektör Regresyon (SVR) yöntemlerinin, çeşitli trafik koşulları altında tahminler gerçekleştirirken oldukça rekabetçi olduğu ortaya çıkmaktadır. Karşılaştırmalı çalışmalar, YSA'nın daha doğru tahmin sonuçları sağladığını ve bir duraktan diğer durağa geçme süresi dağılımındaki belirsizlikleri daha etkin bir şekilde tahmin etme eğiliminde olduğunu göstermektedir.

Kaynakça

  • [1] G. Temelcan, G. Sistem optimal bulanık trafik atama probleminin optimizasyonu, 2020.
  • [2] B. T. Palamutçuoğlu, Şehir içi toplu taşıma planlamasında akıllı kart veri madenciliği ile sefer sıklığı optimizasyonu, 2020.
  • [3] I.J. Chien, Y. Ding, Wei, C. “Dynamic bus arrival time prediction with artificial neural networks”, J. Transp. Eng., 128 (5), 429–438, 2002.
  • [4] R. Jeong, R. Rilett, “Bus arrival time prediction using artificial neural network model”. In Proceedings. The 7th international IEEE conference on intelligent transportation systems (IEEE Cat. No. 04TH8749) (pp. 988-993). IEEE, 2004.
  • [5] H. Liu, K. Zhang, R., He, J., Li, “A neural network model for travel time prediction”, in: Proc IEEE Conf Intell Comput Intell Syst (ICIS), Vol. 1, pp. 752–756, 2009.
  • [6] M. Chen, X., Liu, J. Xia, S.I. Chien, A dynamic bus-arrival time prediction model based on APC data, Comput.-Aided Civ. Inf., 19 (5), 364–376, 2004.
  • [7] Y. Lin, X. Yang, N. Zou & L. Jia. “Real-time bus arrival time prediction: case study for Jinan, China”. Journal of Transportation Engineering, 139(11), 1133-1140, 2013.
  • [8] B. Yu, H. Wang, W. Shan, B. Yao,. Prediction of bus travel time using random forests based on near neighbors, Comput.-Aided Civ. Inf., 33 (4) (2018) 333–350, 2018.
  • [9] B. Yu, Z. Yang, J. Lin. “Bus arrival time prediction using support vector machines”, J. Intell. Transp. S 10 (4), 151–158, 2006.
  • [10] D. S. Huang. The Study of Data Mining Methods for Gene Expression Profiles, 2009.
  • [11] C. Bai, Z. Peng, Q. Lu, J. Sun. “Dynamic bus travel time prediction models on road with multiple bus routes”, Comput. Intell. Neurosci. (432389), 2015.
  • [12] J. Patnaik, S. Chien, Bladikas, A. “Estimation of bus arrival times using APC data”, J. Public Transp, 7 (1), 1–20, 2004.
  • [13] Y. Zhou, L. Yao, Y. Chen, Y. Gong, J. Lai. “Bus arrival time calculation model based on smart card data”, J. Comput. 74 (8), 1634–1638, 2017.
  • [14] B Yu, Z. Z., Yang, K. Chen, , B. Yu,” Hybrid model for prediction of bus arrival times at next station”, J. Adv. Transp. 44 (3), 193–204, 2010.
  • [15] S Zhong, J. Hu, S. Ke, X. Wang , J. Zhao, B. Yao, (2015). “A hybrid model based on support vector machine for bus travel-time prediction”, Promet - Traffic – Traffico, 27 (4), 291–300, 2015.
  • [16] J. Pang, J. Huang, Y. Du, H. Yu, Q. Huang, & B. Yin, .”Learning to predict bus arrival time from heterogeneous measurements via recurrent neural network”. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3283-3293, 2018.
  • [17] Y. Lin, X. Yang, N. Zou, N. ve L. Jia. “Real-time bus arrival time prediction: Case study for Jinan, China,” J. Transp. Eng., 139 (11), 1133–1140, 2013.
  • [18] R. Jeong, L.R. Rilett, L.R. “Bus arrival time prediction using artificial neural network model”, in: Proc IEEE 7th Conf Intell Transp Syst (ITSC), pp. 988–993, 2004.
  • [19] H Yu, D. Chen, Z. Wu, X. Ma, & Y. Wang, “Headway-based bus bunching prediction using transit smart card data”. Transportation Research Part C: Emerging Technologies, 72, 45-59, 2016.
  • [20] J. Chai, C. Wu, C. Zhao, H. L. Chi, X. Wang, B. W. K. Ling, & K. L. Teo, “Reference tag supported RFID tracking using robust support vector regression and Kalman filter”. Advanced Engineering Informatics, 32, 1-10, 2017.
  • [21] B. Yu., W.H.K. Lam, L.T. Mei. “Bus arrival time prediction at bus stop with multiple routes”, Transp. Res. C 19 (6), 1157–1170, 2011.
  • [22] X. Liu, J. Jin, W. Wu, & F. Herz. “A novel support vector machine ensemble model for estimation of free lime content in cement clinkers”. ISA transactions, 99, 479-487, 2020.
  • [23] D. J. Sargent, “Comparison of artificial neural networks with other statistical approaches-results from medical data sets”, Cancer, 91(8), 1636-1642, 2001.
  • [24] A. Abraham, (2004). “Meta-Learning Evolutionary Artificial Neural Networks”, Neurocomputing Journal, 56, 36-37.
  • [25] Z. A. Vassilis, M. P. Dimitris ve G. A Vassilis, V. A. Athanasios . “Solar radiation estimation methods using ANN and empirical models”, Computers and Electronics in Agriculture, 160, 160–167, 2019.
  • [26] C. Fyfe, C. (2000). Artificial neural networks and information theory, 2000.
  • [27] C. Cortes, V. Vapnik. “Support-vector networks”, Machine Learning, 20, 273-97, 1995.
  • [28] A. J. Smola, “A tutorial on support vector regression”. Statistics and Computing, 1998.
  • [29] D.S. Huang & W. B. Zhao. “Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms”. Applied Mathematics and Computation, 162(1), 461-473, 2005.
  • [30] Z. Liu, Y. Xu, G. Duan, C. Qiu., & J. Tan. (2021). “Accurate on-line support vector regression incorporated with compensated prior knowledge”. Neural Computing and Applications, 33(15), 9005-9023, 2021.
  • [31] X. Tang., Z. Ma, Q. Hu & W. Tang. “A real-time arrhythmia heartbeats classification algorithm using parallel delta modulations and rotated linear-kernel support vector machines”. IEEE Transactions on Biomedical Engineering, 67(4), 978-986, 2019.
  • [32] C. S. Lo, & C. M. Wang, C. M. “Support vector machine for breast MR image classification”. Computers & Mathematics with Applications, 64(5), 1153-1162.
  • [33] C. J. Willmott. “Some comments on the evaluation of model performance”. Bulletin of the American Meteorological Society, 63(11), 1309-1313, 1982.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kevser Şahinbaş 0000-0002-8076-3678

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 23 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE K. Şahinbaş, “Gerçek Hayat Verileriyle Makine Öğrenmesi Algoritmalarına Dayalı Otobüs Durak Süresi Tahmini”, DÜMF MD, c. 13, sy. 3, ss. 421–428, 2022, doi: 10.24012/dumf.1120379.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456