Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık tekstilin kohezyonlu zeminin serbest basınç dayanımı üzerindeki etkisi

Yıl 2025, Cilt: 16 Sayı: 2, 471 - 478, 30.06.2025
https://doi.org/10.24012/dumf.1605801

Öz

Geoteknik mühendisliğinde sürdürülebilir ve çevre dostu çözümlere duyulan ihtiyacın artması, zemin iyileştirmesi için atık malzemelerin kullanılmasına yönelik önemli bir ilgi uyandırmıştır. Bu çalışma, tekstil atıklarının geri dönüşümüne katkıda bulunurken zemin özelliklerini geliştirmeyi amaçlayarak, atık kot kumaşın killi siltli zemin için bir takviye malzemesi olarak kullanımını araştırmaktadır. Atık kot kumaş üç en boy oranında (A1: 6×6 mm, A2: 6×12 mm ve A4: 6×24 mm) hazırlanmış ve kuru ağırlık temel alınarak farklı oranlarda (%0,4, %0,8 ve %1,6) zemine dahil edilmiştir. Kot takviyesinin gerilme-şekil değiştirme davranışı, UCS değeri, elastik modül, UCS artış oranı, deforme olabilirlik indeksi ve normalize edilmiş enerji yutma kapasitesi üzerindeki etkilerini analiz etmek için serbest basınç dayanımı (UCS) deneyleri yapılmıştır. Sonuçlar, güçlendirilmiş zeminin mekanik özelliklerinde güçlendirilmemiş zemine kıyasla önemli bir artış olduğunu göstermiştir. UCS, kot takviyesiyle önemli ölçüde artmış, en yüksek mukavemet A4 boyutlu kumaşta %1,6 ve %0,4 takviye oranlarında elde edilerek sırasıyla yaklaşık %41,67 ve %40,91 artış sağlanmıştır. Ayrıca, enerji emme kapasitesi A4 boyutlu kumaşla en önemli gelişmeyi göstererek normalleştirilmiş 1,4 değerine ulaşmış ve yükleme altında enerjiyi dağıtma konusundaki üstün yeteneğini göstermiştir. Ek olarak, zemin sağlamlığını temsil eden elastik modül, kot takviyesiyle, özellikle de tüm konfigürasyonlar arasında en yüksek değeri elde eden %0,4 A4 kumaşla artmıştır. Çalışma, atık kot kumaşın zemin iyileştirmesi için uygulanabilir, sürdürülebilir bir malzeme olduğu ve geleneksel zemin stabilizasyon yöntemlerine çevre dostu bir alternatif sunduğu sonucuna varmaktadır.

Kaynakça

  • [1] F. Cássio, D. Batista, and A. Pradhan, “Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know,” Biomolecules, vol. 12, no. 6, p. 798, Jun. 2022, doi: 10.3390/biom12060798.
  • [2] P. Pant, D. Chauhan, M. Chauhan, A. Kumar, and A. Kaushik, “Plastic and Microplastic Wastes as Environmental Toxicants,” in Bioremediation of Environmental Toxicants, Boca Raton: CRC Press, 2024, pp. 41–56. doi: 10.1201/9781003310136-4.
  • [3] S. V. Mohanaprasadh, P. Singh, and K. D. Bahukhandi, “Disposal of Non-biodegradable Waste Using Eco-Friendly Methods,” in In Environmental Pollution and Natural Resource Management, 2022, pp. 345–363. doi: 10.1007/978-3-031-05335-1_20.
  • [4] P. Jain, “Effect of Biodegradation and Non Degradable Substances in Environment,” International Journal of Life Sciences, pp. 50–55, Mar. 2017, doi: 10.21744/ijls.v1i1.24.
  • [5] R. Rathinamoorthy and T. Karthik, “Chemicals and effluent treatment in denim processing,” in Sustainability in Denim, Elsevier, 2017, pp. 197–234. doi: 10.1016/B978-0-08-102043-2.00008-3.
  • [6] M. Öztürk, “Strength characteristics of lightweight soil with waste modified expanded polystyrene particles,” Constr Build Mater, vol. 442, Sep. 2024, doi: 10.1016/j.conbuildmat.2024.137635.
  • [7] M. G. Ujankar and P. Hari Krishna, “Use of Waste Polypropylene Plastic in Geotechnical Applications,” 2020, pp. 291–299. doi: 10.1007/978-981-15-3662-5_24.
  • [8] B. Bagriacik, “Utilization of alkali-activated construction demolition waste for sandy soil improvement with large-scale laboratory experiments,” Constr Build Mater, vol. 302, p. 124173, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124173.
  • [9] S. Akbulut and A. Saglamer, “Modification of hydraulic conductivity in granular soils using waste materials,” Waste Management, vol. 24, no. 5, pp. 491–499, Jan. 2004, doi: 10.1016/j.wasman.2004.01.002.
  • [10] N. Dora, P. Nanda, and N. G. Reddy, “Application of Biopolymers for Enhancing Engineering Properties of Problematic Soils and Industrial Wastes: A Review,” 2021, pp. 203–211. doi: 10.1007/978-981-33-4590-4_20.
  • [11] N.-M. Ilieş, A.-P. Cîrcu, A.-C. Nagy, V.-C. Ciubotaru, and Z. Kisfaludi-Bak, “Comparative Study on Soil Stabilization with Polyethylene Waste Materials and Binders,” Procedia Eng, vol. 181, pp. 444–451, 2017, doi: 10.1016/j.proeng.2017.02.414.
  • [12] M. Yaghoubi, A. Arulrajah, and S. Horpibulsuk, “Engineering Behaviour of a Geopolymer-stabilised High-water Content Soft Clay,” International Journal of Geosynthetics and Ground Engineering, vol. 8, no. 3, p. 45, Jun. 2022, doi: 10.1007/s40891-022-00385-z.
  • [13] N. URAL, Ü. KUT, and N. GÜLSEVİNÇ, “Atık PVC ile Zemin İyileştirme,” El-Cezeri Fen ve Mühendislik Dergisi, Aug. 2020, doi: 10.31202/ecjse.747919.
  • [14] C.-H. Liu and C. Hung, “Reutilization of solid wastes to improve the hydromechanical and mechanical behaviors of soils — a state-of-the-art review,” Sustainable Environment Research, vol. 33, no. 1, p. 17, May 2023, doi: 10.1186/s42834-023-00179-6.
  • [15] N. Kardani, A. Zhou, S.-L. Shen, and M. Nazem, “Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches,” Transportation Geotechnics, vol. 29, p. 100591, Jul. 2021, doi: 10.1016/j.trgeo.2021.100591.
  • [16] P. Nagendra, M. Samarth Urs, K. N. Prakash Narasimha, C. Vinay, and M. Savitha, “Estimation of Unconfined Compressive Strength of Cohesive Soils in and Around Mysore, South India,” 2024, pp. 167–180. doi: 10.1007/978-981-99-8505-0_17.
  • [17] I. T. Bahmed, J. Khatti, and K. S. Grover, “Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil,” Bulletin of Engineering Geology and the Environment, vol. 83, no. 1, p. 46, Jan. 2024, doi: 10.1007/s10064-023-03537-1.
  • [18] G. U. Alaneme et al., “Mechanical Properties Optimization and Simulation of Soil–Saw Dust Ash Blend Using Extreme Vertex Design (EVD) Method,” International Journal of Pavement Research and Technology, vol. 17, no. 4, pp. 827–853, Jul. 2024, doi: 10.1007/s42947-023-00272-4.
  • [19] S. Z. Ashiq, A. Akbar, K. Farooq, and H. Mujtaba, “Sustainable improvement in engineering behavior of Siwalik Clay using industrial waste glass powder as additive,” Case Studies in Construction Materials, vol. 16, p. e00883, Jun. 2022, doi: 10.1016/j.cscm.2022.e00883.
  • [20] M. A. M. Al-Bared, Z. Mustaffa, D. J. Armaghani, A. Marto, N. Z. M. Yunus, and M. Hasanipanah, “Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive,” Transportation Geotechnics, vol. 30, p. 100627, Sep. 2021, doi: 10.1016/j.trgeo.2021.100627.
  • [21] J. S. Yadav, S. K. Tiwari, and A. Garg, “Strength and ductility behaviour of rubberised cemented clayey soil,” Proceedings of the Institution of Civil Engineers - Ground Improvement, vol. 175, no. 1, pp. 34–50, Feb. 2022, doi: 10.1680/jgrim.19.00017.
  • [22] A. J. Choobbasti, M. A. Samakoosh, and S. S. Kutanaei, “Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers,” Constr Build Mater, vol. 211, pp. 1094–1104, Jun. 2019, doi: 10.1016/j.conbuildmat.2019.03.306.
  • [23] M. Bekhiti, H. Trouzine, and M. Rabehi, “Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil,” Constr Build Mater, vol. 208, pp. 304–313, May 2019, doi: 10.1016/j.conbuildmat.2019.03.011.
  • [24] Y. Xu, “Unconfined Compressive Strength of Municipal Solid Waste Incineration Bottom Ashes,” Geotechnical and Geological Engineering, vol. 37, no. 3, pp. 1373–1382, Jun. 2019, doi: 10.1007/s10706-018-0692-7.
  • [25] ASTM D854, “Standard Test Methods for Manganese in Water,” ASTM International, West Conshohocken, PA, 2007.
  • [26] ASTM D698, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” ASTM International, West Conshohocken, PA, 2007.
  • [27] ASTM D4318, “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” ASTM International, West Conshohocken, PA, 2018.
  • [28] ASTM D7928, “Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis,” ASTM International, West Conshohocken, PA, 2021.
  • [29] ASTM D2487, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” ASTM International, West Conshohocken, PA, 2006.
  • [30] AASHTO M145, “Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes,” Am. Assoc. State Highw. Transp. Off, Philadelphia, PA., 1991.
  • [31] J. P. Malizia and A. Shakoor, “Effect of water content and density on strength and deformation behavior of clay soils,” Eng Geol, vol. 244, pp. 125–131, Oct. 2018, doi: 10.1016/j.enggeo.2018.07.028.
  • [32] V. Sivakumar, J. Zaini, D. Gallipoli, and B. Solan, “Wetting of compacted clays under laterally restrained conditions: Initial state, overburden pressure and mineralogy,” Geotechnique, vol. 65, no. 2, pp. 111–125, Feb. 2015, doi: 10.1680/geot.14.P.019.
  • [33] U. Veena and N. James, “Natural Rubber Latex for Improving Ductility Characteristics of Soil: A Preliminary Experimental Investigation,” Geotechnical and Geological Engineering, vol. 40, no. 9, pp. 4419–4446, Sep. 2022, doi: 10.1007/s10706-022-02162-1.

Influence of waste textile on the unconfined compressive strength of cohesive soil

Yıl 2025, Cilt: 16 Sayı: 2, 471 - 478, 30.06.2025
https://doi.org/10.24012/dumf.1605801

Öz

The increasing need for sustainable and environmentally friendly solutions in geotechnical engineering has prompted significant interest in utilizing waste materials for soil improvement. This study explores the utilize of waste denim fabric as a reinforcement material for clayey silt soil, aiming to enhance soil properties while contributing to the recycling of textile waste. Waste denim was prepared in three aspect ratios (A1: 6×6 mm, A2: 6×12 mm, and A4: 6×24 mm) and incorporated to the soil in different ratios based on dry weight (0.4%, 0.8%, and 1.6%). Unconfined compressive strength (UCS) tests were conducted to analyze the effects of denim reinforcement on stress-strain behavior, UCS value, elastic modulus, UCS increase ratio, deformability index, and normalized energy absorption capacity. The results demonstrated a significant enhancement in the mechanical properties of the reinforced soil compared to the unreinforced soil. The UCS increased notably with denim reinforcement, with the highest strength achieved by A4-sized fabric at 1.6% and 0.4% reinforcement rates, yielding approximately 41.67% and 40.91% increases, respectively. Furthermore, the energy absorption index showed the most substantial improvement with A4-sized fabric, reaching a normalized value of 1.4, highlighting its superior ability to dissipate energy under loading. Additionally, the elastic modulus, representing soil stiffness, increased with denim reinforcement, particularly with 0.4% A4 fabric, which achieved the highest value among all configurations. The study concludes that waste denim fabric is a viable, sustainable material for soil improvement, offering an eco-friendly alternative to traditional soil stabilization methods.

Kaynakça

  • [1] F. Cássio, D. Batista, and A. Pradhan, “Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know,” Biomolecules, vol. 12, no. 6, p. 798, Jun. 2022, doi: 10.3390/biom12060798.
  • [2] P. Pant, D. Chauhan, M. Chauhan, A. Kumar, and A. Kaushik, “Plastic and Microplastic Wastes as Environmental Toxicants,” in Bioremediation of Environmental Toxicants, Boca Raton: CRC Press, 2024, pp. 41–56. doi: 10.1201/9781003310136-4.
  • [3] S. V. Mohanaprasadh, P. Singh, and K. D. Bahukhandi, “Disposal of Non-biodegradable Waste Using Eco-Friendly Methods,” in In Environmental Pollution and Natural Resource Management, 2022, pp. 345–363. doi: 10.1007/978-3-031-05335-1_20.
  • [4] P. Jain, “Effect of Biodegradation and Non Degradable Substances in Environment,” International Journal of Life Sciences, pp. 50–55, Mar. 2017, doi: 10.21744/ijls.v1i1.24.
  • [5] R. Rathinamoorthy and T. Karthik, “Chemicals and effluent treatment in denim processing,” in Sustainability in Denim, Elsevier, 2017, pp. 197–234. doi: 10.1016/B978-0-08-102043-2.00008-3.
  • [6] M. Öztürk, “Strength characteristics of lightweight soil with waste modified expanded polystyrene particles,” Constr Build Mater, vol. 442, Sep. 2024, doi: 10.1016/j.conbuildmat.2024.137635.
  • [7] M. G. Ujankar and P. Hari Krishna, “Use of Waste Polypropylene Plastic in Geotechnical Applications,” 2020, pp. 291–299. doi: 10.1007/978-981-15-3662-5_24.
  • [8] B. Bagriacik, “Utilization of alkali-activated construction demolition waste for sandy soil improvement with large-scale laboratory experiments,” Constr Build Mater, vol. 302, p. 124173, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124173.
  • [9] S. Akbulut and A. Saglamer, “Modification of hydraulic conductivity in granular soils using waste materials,” Waste Management, vol. 24, no. 5, pp. 491–499, Jan. 2004, doi: 10.1016/j.wasman.2004.01.002.
  • [10] N. Dora, P. Nanda, and N. G. Reddy, “Application of Biopolymers for Enhancing Engineering Properties of Problematic Soils and Industrial Wastes: A Review,” 2021, pp. 203–211. doi: 10.1007/978-981-33-4590-4_20.
  • [11] N.-M. Ilieş, A.-P. Cîrcu, A.-C. Nagy, V.-C. Ciubotaru, and Z. Kisfaludi-Bak, “Comparative Study on Soil Stabilization with Polyethylene Waste Materials and Binders,” Procedia Eng, vol. 181, pp. 444–451, 2017, doi: 10.1016/j.proeng.2017.02.414.
  • [12] M. Yaghoubi, A. Arulrajah, and S. Horpibulsuk, “Engineering Behaviour of a Geopolymer-stabilised High-water Content Soft Clay,” International Journal of Geosynthetics and Ground Engineering, vol. 8, no. 3, p. 45, Jun. 2022, doi: 10.1007/s40891-022-00385-z.
  • [13] N. URAL, Ü. KUT, and N. GÜLSEVİNÇ, “Atık PVC ile Zemin İyileştirme,” El-Cezeri Fen ve Mühendislik Dergisi, Aug. 2020, doi: 10.31202/ecjse.747919.
  • [14] C.-H. Liu and C. Hung, “Reutilization of solid wastes to improve the hydromechanical and mechanical behaviors of soils — a state-of-the-art review,” Sustainable Environment Research, vol. 33, no. 1, p. 17, May 2023, doi: 10.1186/s42834-023-00179-6.
  • [15] N. Kardani, A. Zhou, S.-L. Shen, and M. Nazem, “Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches,” Transportation Geotechnics, vol. 29, p. 100591, Jul. 2021, doi: 10.1016/j.trgeo.2021.100591.
  • [16] P. Nagendra, M. Samarth Urs, K. N. Prakash Narasimha, C. Vinay, and M. Savitha, “Estimation of Unconfined Compressive Strength of Cohesive Soils in and Around Mysore, South India,” 2024, pp. 167–180. doi: 10.1007/978-981-99-8505-0_17.
  • [17] I. T. Bahmed, J. Khatti, and K. S. Grover, “Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil,” Bulletin of Engineering Geology and the Environment, vol. 83, no. 1, p. 46, Jan. 2024, doi: 10.1007/s10064-023-03537-1.
  • [18] G. U. Alaneme et al., “Mechanical Properties Optimization and Simulation of Soil–Saw Dust Ash Blend Using Extreme Vertex Design (EVD) Method,” International Journal of Pavement Research and Technology, vol. 17, no. 4, pp. 827–853, Jul. 2024, doi: 10.1007/s42947-023-00272-4.
  • [19] S. Z. Ashiq, A. Akbar, K. Farooq, and H. Mujtaba, “Sustainable improvement in engineering behavior of Siwalik Clay using industrial waste glass powder as additive,” Case Studies in Construction Materials, vol. 16, p. e00883, Jun. 2022, doi: 10.1016/j.cscm.2022.e00883.
  • [20] M. A. M. Al-Bared, Z. Mustaffa, D. J. Armaghani, A. Marto, N. Z. M. Yunus, and M. Hasanipanah, “Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive,” Transportation Geotechnics, vol. 30, p. 100627, Sep. 2021, doi: 10.1016/j.trgeo.2021.100627.
  • [21] J. S. Yadav, S. K. Tiwari, and A. Garg, “Strength and ductility behaviour of rubberised cemented clayey soil,” Proceedings of the Institution of Civil Engineers - Ground Improvement, vol. 175, no. 1, pp. 34–50, Feb. 2022, doi: 10.1680/jgrim.19.00017.
  • [22] A. J. Choobbasti, M. A. Samakoosh, and S. S. Kutanaei, “Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers,” Constr Build Mater, vol. 211, pp. 1094–1104, Jun. 2019, doi: 10.1016/j.conbuildmat.2019.03.306.
  • [23] M. Bekhiti, H. Trouzine, and M. Rabehi, “Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil,” Constr Build Mater, vol. 208, pp. 304–313, May 2019, doi: 10.1016/j.conbuildmat.2019.03.011.
  • [24] Y. Xu, “Unconfined Compressive Strength of Municipal Solid Waste Incineration Bottom Ashes,” Geotechnical and Geological Engineering, vol. 37, no. 3, pp. 1373–1382, Jun. 2019, doi: 10.1007/s10706-018-0692-7.
  • [25] ASTM D854, “Standard Test Methods for Manganese in Water,” ASTM International, West Conshohocken, PA, 2007.
  • [26] ASTM D698, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” ASTM International, West Conshohocken, PA, 2007.
  • [27] ASTM D4318, “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” ASTM International, West Conshohocken, PA, 2018.
  • [28] ASTM D7928, “Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis,” ASTM International, West Conshohocken, PA, 2021.
  • [29] ASTM D2487, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” ASTM International, West Conshohocken, PA, 2006.
  • [30] AASHTO M145, “Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes,” Am. Assoc. State Highw. Transp. Off, Philadelphia, PA., 1991.
  • [31] J. P. Malizia and A. Shakoor, “Effect of water content and density on strength and deformation behavior of clay soils,” Eng Geol, vol. 244, pp. 125–131, Oct. 2018, doi: 10.1016/j.enggeo.2018.07.028.
  • [32] V. Sivakumar, J. Zaini, D. Gallipoli, and B. Solan, “Wetting of compacted clays under laterally restrained conditions: Initial state, overburden pressure and mineralogy,” Geotechnique, vol. 65, no. 2, pp. 111–125, Feb. 2015, doi: 10.1680/geot.14.P.019.
  • [33] U. Veena and N. James, “Natural Rubber Latex for Improving Ductility Characteristics of Soil: A Preliminary Experimental Investigation,” Geotechnical and Geological Engineering, vol. 40, no. 9, pp. 4419–4446, Sep. 2022, doi: 10.1007/s10706-022-02162-1.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Geoteknik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mitat Öztürk 0000-0003-4685-7088

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 23 Aralık 2024
Kabul Tarihi 27 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE M. Öztürk, “Influence of waste textile on the unconfined compressive strength of cohesive soil”, DÜMF MD, c. 16, sy. 2, ss. 471–478, 2025, doi: 10.24012/dumf.1605801.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456