Araştırma Makalesi
BibTex RIS Kaynak Göster

Lityum İyon Pillerin Termal Performansını Yönetmede Gelişmiş Soğutma Çözümlerinin Etkinliği: Sayısal Bir Çalışma

Yıl 2025, Cilt: 16 Sayı: 2, 397 - 410, 30.06.2025
https://doi.org/10.24012/dumf.1631467

Öz

Bu çalışma, kapsamlı bir Pil Termal Yönetim Sistemi (BTMS) çerçevesi kullanarak lityum iyon pillerin (LiB'ler) gelişmiş termal yönetimini araştırmaktadır. Sayısal simülasyonlar ve deneysel doğrulamalar kullanan araştırma, farklı soğutucu akış hızları (0,1 m/s, 0,5 m/s ve 1 m/s) ve soğutucu tipleri (su ve etilen glikol) altında üç farklı soğutma konfigürasyonunu (Durum 1, Durum 2 ve Durum 3) değerlendirmektedir. Nanofluidleri içeren çalışma, geleneksel yöntemlere kıyasla ısı transfer verimliliğinde önemli iyileştirmeler göstermektedir. Bulgular, daha yüksek akış hızlarının ısı dağılımını ve sıcaklık düzgünlüğünü artırdığını, suyun üstün termal iletkenliği nedeniyle etilen glikolü geride bıraktığını ortaya koymaktadır. 298 K ila 318 K arasındaki bir sıcaklık gradyanı, optimize edilmiş akış dağılımının ve kanal geometrisinin önemini vurgulamaktadır. Bu çalışma yalnızca LiB termal yönetimindeki kritik zorlukları ele almakla kalmamaktadır. Bu araştırma, elektrikli araçlar ve yenilenebilir enerji depolama gibi uygulamalar için daha güvenli ve daha verimli soğutma sistemlerinin tasarımına ilişkin önemli bilgiler sunmaktadır. Bu araştırma, teorik içgörüler sağlamanın yanı sıra, bu tür sistemlerin tasarımı için uygulanabilir öneriler de sunmaktadır. Bu araştırmanın gelecekteki yönleri arasında, termal performansı daha da artırmak için mikro kanal soğutma ve faz değişim malzemelerinin entegrasyonu yer almaktadır.

Kaynakça

  • [1] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001,
  • [2] S. Megahed and B. Scrosati, “Lithium-ion rechargeable batteries,” Journal of Power Sources, vol. 51, no. 1–2, pp. 79–104, 1994,
  • [3] A. Pesaran, “Battery thermal management in EVs and HEVs: Issues and solutions,” in Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, pp. 34–49, 2001.
  • [4] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, “Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review,” Energy Storage Materials, vol. 10, pp. 246–267, 2018,
  • [5] G. Li, “Promotion of practical technology of the thermal management system for cylindrical power battery,” Energy Informatics, vol. 7, no. 1, p. 33, 2024,
  • [6] J. Ren, X. Wang, Y. Zhao, and L. Chen, “Battery thermal management system by employing different phase change materials with SWCNT nanoparticles to obtain better battery cooling performance,” Case Studies in Thermal Engineering, vol. 61, p. 104987, 2024.
  • [7] S. Argade and A. De, “Optimization study of a Z-type airflow cooling system of a lithium-ion battery pack,” Physics of Fluids, vol. 36, no. 6, 2024,
  • [8] M. Hajialibabaei, M. M. Saghir, and M. Z. Saghir, “A critical review of the straight and wavy microchannel heat sink and the application in lithium-ion battery thermal management,” International Journal of Thermofluids, vol. 14, p. 100153, 2022.
  • [9] V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, “Development of phase change materials based microchannel thermal management system for high heat flux electronic devices,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1373–1391, 2011.
  • [10] Ortiz, Y., Arévalo, P., Peña, D., & Jurado, F. (2024). Recent advances in thermal management strategies for lithium-ion batteries: a comprehensive review. Batteries, 10(3), 83.
  • [11] H. Jeon, J. Kim, S. Lee, S. H. Lee, and J. H. Park, “Cooling strategy optimization of cylindrical lithium-ion battery pack via multi-counter cooling channels,” Energies, vol. 16, no. 23, p. 7860, 2023.
  • [12] Ahmadian-Elmi, M., & Zhao, P. (2024). Review of thermal management strategies for cylindrical lithium-ion battery packs. Batteries, 10(2), 50.
  • [13] Kurre, S. K., Arya, S., & Yadav, J. (2024). Thermal analysis of batteries of electrical vehicle battery for effective thermal management. Materials Today: Proceedings, 99, 63-69.
  • [14] Xu, H., Zhang, X., Xiang, G., & Li, H. (2021). Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile. Case Studies in Thermal Engineering, 26, 101012.
  • [15] Garud, K. S., Tai, L. D., Hwang, S. G., Nguyen, N. H., & Lee, M. Y. (2023). A review of advanced cooling strategies for battery thermal management systems in electric vehicles. Symmetry, 15(7), 1322.
  • [16] Wu, C., Sun, Y., Tang, H., Zhang, S., Yuan, W., Zhu, L., & Tang, Y. (2024). A review on the liquid cooling thermal management system of lithium-ion batteries. Applied Energy, 375, 124173.
  • [17] Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R., & Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 159, 112207.
  • [18] Son, Y. W., Kang, D., & Kim, J. (2023). Passive battery thermal management system for an unmanned aerial vehicle using a tetrahedral lattice porous plate. Applied Thermal Engineering, 225, 120186.
  • [19] Mali, V., Saxena, R., Kumar, K., Kalam, A., & Tripathi, B. (2021). Review on battery thermal management systems for energy-efficient electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111611.
  • [20] Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631.
  • [21] Rahmani, A., Dibaj, M., & Akrami, M. (2024). Recent advancements in battery thermal management systems for enhanced performance of Li-ion batteries: A comprehensive review. Batteries, 10(8), 265.
  • [22] Maknikar, S. K., & Pawar, A. M. (2023). Application of phase change material (PCM) in battery thermal management system (BTMS): A critical review. Materials Today: Proceedings.
  • [23] Ye, J., Aldaher, A. Y. M., & Tan, G. (2023). Thermal performance analysis of 18,650 battery thermal management system integrated with liquid-cooling and air-cooling. Journal of Energy Storage, 72, 108766.
  • [24] M. Bernagozzi, A. Georgoulas, N. Miché, C. Rouaud, M. Marengo, Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts, Applied Thermal Engineering, 194 (2021), 117061.
  • [25] K. Chen, Y. Chen, Y. She, M. Song, S. Wang, L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management, Applied Thermal Engineering, 166 (2020), 114679.
  • [26] K. Chen, M. Song, W. Wei, S. Wang, Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement, International Journal of Heat and Mass Transfer, 132 (2019), 309–321.

The Effectiveness of Advanced Cooling Solutions in Managing the Thermal Performance of Lithium-Ion Batteries: A Numerical Study

Yıl 2025, Cilt: 16 Sayı: 2, 397 - 410, 30.06.2025
https://doi.org/10.24012/dumf.1631467

Öz

This study explores the advanced thermal management of lithium-ion batteries (LiBs) using a comprehensive Battery Thermal Management System (BTMS) framework. Employing numerical simulations and experimental validations, the research evaluates three distinct cooling configurations (Case 1, Case 2, and Case 3) under varying coolant flow velocities (0.1 m/s, 0.5 m/s, and 1 m/s) and coolant types (water and ethylene glycol). Incorporating nanofluids, the study demonstrates significant improvements in heat transfer efficiency compared to conventional methods. Findings reveal that higher flow velocities enhance heat dissipation and temperature uniformity. Additionally, water outperforms ethylene glycol due to its superior thermal conductivity. A temperature gradient from 298 K to 318 K underscores the importance of optimized flow distribution and channel geometry. This work not only addresses critical challenges in LiB thermal management but also offers significant insights into the design of safer and more efficient cooling systems for applications such as electric vehicles and renewable energy storage. In addition to providing theoretical insights, this research offers actionable recommendations for the design of such systems. Future directions for this research include the integration of microchannel cooling and phase change materials to further enhance thermal performance.

Kaynakça

  • [1] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001,
  • [2] S. Megahed and B. Scrosati, “Lithium-ion rechargeable batteries,” Journal of Power Sources, vol. 51, no. 1–2, pp. 79–104, 1994,
  • [3] A. Pesaran, “Battery thermal management in EVs and HEVs: Issues and solutions,” in Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, pp. 34–49, 2001.
  • [4] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, “Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review,” Energy Storage Materials, vol. 10, pp. 246–267, 2018,
  • [5] G. Li, “Promotion of practical technology of the thermal management system for cylindrical power battery,” Energy Informatics, vol. 7, no. 1, p. 33, 2024,
  • [6] J. Ren, X. Wang, Y. Zhao, and L. Chen, “Battery thermal management system by employing different phase change materials with SWCNT nanoparticles to obtain better battery cooling performance,” Case Studies in Thermal Engineering, vol. 61, p. 104987, 2024.
  • [7] S. Argade and A. De, “Optimization study of a Z-type airflow cooling system of a lithium-ion battery pack,” Physics of Fluids, vol. 36, no. 6, 2024,
  • [8] M. Hajialibabaei, M. M. Saghir, and M. Z. Saghir, “A critical review of the straight and wavy microchannel heat sink and the application in lithium-ion battery thermal management,” International Journal of Thermofluids, vol. 14, p. 100153, 2022.
  • [9] V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, “Development of phase change materials based microchannel thermal management system for high heat flux electronic devices,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1373–1391, 2011.
  • [10] Ortiz, Y., Arévalo, P., Peña, D., & Jurado, F. (2024). Recent advances in thermal management strategies for lithium-ion batteries: a comprehensive review. Batteries, 10(3), 83.
  • [11] H. Jeon, J. Kim, S. Lee, S. H. Lee, and J. H. Park, “Cooling strategy optimization of cylindrical lithium-ion battery pack via multi-counter cooling channels,” Energies, vol. 16, no. 23, p. 7860, 2023.
  • [12] Ahmadian-Elmi, M., & Zhao, P. (2024). Review of thermal management strategies for cylindrical lithium-ion battery packs. Batteries, 10(2), 50.
  • [13] Kurre, S. K., Arya, S., & Yadav, J. (2024). Thermal analysis of batteries of electrical vehicle battery for effective thermal management. Materials Today: Proceedings, 99, 63-69.
  • [14] Xu, H., Zhang, X., Xiang, G., & Li, H. (2021). Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile. Case Studies in Thermal Engineering, 26, 101012.
  • [15] Garud, K. S., Tai, L. D., Hwang, S. G., Nguyen, N. H., & Lee, M. Y. (2023). A review of advanced cooling strategies for battery thermal management systems in electric vehicles. Symmetry, 15(7), 1322.
  • [16] Wu, C., Sun, Y., Tang, H., Zhang, S., Yuan, W., Zhu, L., & Tang, Y. (2024). A review on the liquid cooling thermal management system of lithium-ion batteries. Applied Energy, 375, 124173.
  • [17] Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R., & Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 159, 112207.
  • [18] Son, Y. W., Kang, D., & Kim, J. (2023). Passive battery thermal management system for an unmanned aerial vehicle using a tetrahedral lattice porous plate. Applied Thermal Engineering, 225, 120186.
  • [19] Mali, V., Saxena, R., Kumar, K., Kalam, A., & Tripathi, B. (2021). Review on battery thermal management systems for energy-efficient electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111611.
  • [20] Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631.
  • [21] Rahmani, A., Dibaj, M., & Akrami, M. (2024). Recent advancements in battery thermal management systems for enhanced performance of Li-ion batteries: A comprehensive review. Batteries, 10(8), 265.
  • [22] Maknikar, S. K., & Pawar, A. M. (2023). Application of phase change material (PCM) in battery thermal management system (BTMS): A critical review. Materials Today: Proceedings.
  • [23] Ye, J., Aldaher, A. Y. M., & Tan, G. (2023). Thermal performance analysis of 18,650 battery thermal management system integrated with liquid-cooling and air-cooling. Journal of Energy Storage, 72, 108766.
  • [24] M. Bernagozzi, A. Georgoulas, N. Miché, C. Rouaud, M. Marengo, Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts, Applied Thermal Engineering, 194 (2021), 117061.
  • [25] K. Chen, Y. Chen, Y. She, M. Song, S. Wang, L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management, Applied Thermal Engineering, 166 (2020), 114679.
  • [26] K. Chen, M. Song, W. Wei, S. Wang, Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement, International Journal of Heat and Mass Transfer, 132 (2019), 309–321.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Depolama, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Serhat Aydın 0009-0005-4784-5013

Metin Uzun 0000-0002-0744-3491

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 1 Şubat 2025
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE S. Aydın ve M. Uzun, “The Effectiveness of Advanced Cooling Solutions in Managing the Thermal Performance of Lithium-Ion Batteries: A Numerical Study”, DÜMF MD, c. 16, sy. 2, ss. 397–410, 2025, doi: 10.24012/dumf.1631467.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456