Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı baskı sıcaklıklarında üretilen PLA'nın delinmesinde çapak oluşumunun incelenmesi ve tahminli makine öğrenimi

Yıl 2025, Cilt: 16 Sayı: 2, 421 - 429, 30.06.2025
https://doi.org/10.24012/dumf.1656898

Öz

Bu çalışmada, eklemeli imalat (EK) yöntemlerinden biri olan eritilmiş biriktirme modelleme (FDM) tekniği ile polilaktik asit (PLA) malzeme kullanılarak üretilen numunelerin delinmesinde, besleme ve baskı sıcaklığının çapak oluşumuna etkisinin incelenmesi amaçlanmıştır. Bu kapsamda üç farklı baskı sıcaklığında (190-210-230 °C) delme işlemine tabi tutulacak numuneler üretilmiştir. Delme işlemi 1500 dev/dak. mil ve üç farklı besleme (0,1-0,15-0,2 mm/devir) ayarında gerçekleştirilmiştir. Elde edilen sonuçlarda, numunelerin delinmesinde beslemenin artmasıyla çapak yüksekliğinin arttığı, baskı sıcaklığının artmasıyla çapak yüksekliğinin azaldığı görülmüştür. Ayrıca, çapak yüksekliği ve dairesellikten sapma için makine öğrenmesi yöntemi ile tahmin modellemesi yapılmıştır. Ortalama %94'lük bir başarı oranı ile baskı sıcaklığının ve beslemenin delik delme işleminde çapak yüksekliği ve dairesellikten sapmaya etkisi tahmin edilmiştir.

Proje Numarası

-

Kaynakça

  • [1] X. Zhang, L. Chen, T. Mulholland, and T. A. Osswald, “Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling,” Polym. Adv. Technol., vol. 30, no. 8, pp. 2122–2135, Aug. 2019, doi: 10.1002/pat.4645.
  • [2] N. Naveed, “Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM),” Mater. Technol., vol. 36, no. 5, pp. 317–330, Apr. 2021, doi: 10.1080/10667857.2020.1758475.
  • [3] O. Tunçel, “The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens,” Eur. Mech. Sci., vol. 8, no. 1, pp. 11–18, Mar. 2024, doi: 10.26701/ems.1392387.
  • [4] A. W. Gebisa and H. G. Lemu, “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085,” Procedia Manuf., vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047.
  • [5] M. A. Albadrani, “Effects of Raster Angle on the Elasticity of 3D-Printed Polylactic Acid and Polyethylene Terephthalate Glycol,” Designs, vol. 7, no. 5, p. 112, Sep. 2023, doi: 10.3390/designs7050112.
  • [6] V. Mohanavel, K. S. Ashraff Ali, K. Ranganathan, J. Allen Jeffrey, M. M. Ravikumar, and S. Rajkumar, “The roles and applications of additive manufacturing in the aerospace and automobile sector,” Mater. Today Proc., vol. 47, pp. 405–409, 2021, doi: 10.1016/j.matpr.2021.04.596.
  • [7] P. K. Gurrala and S. P. Regalla, “Part strength evolution with bonding between filaments in fused deposition modelling,” Virtual Phys. Prototyp., vol. 9, no. 3, pp. 141–149, Jul. 2014, doi: 10.1080/17452759.2014.913400.
  • [8] M. Eryıldız, “Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation,” Eur. Mech. Sci., vol. 5, no. 3, pp. 116–120, 2021, doi: 10.26701/ems.881254.
  • [9] B. Vo, A. Ajibade, M. Rosengren, K. Pena, and M. Moran, “The Effect of 3D Printing Temperature on the Mechanical Properties of Polypropylene” J. of Undergraduate Chemical Eng. Rsch., vol. 8, no. 1, pp. 24-31, 2019.
  • [10] J. Ivorra-Martinez, M. Á. Peydro, J. Gomez-Caturla, L. Sanchez-Nacher, T. Boronat, and R. Balart, “The effects of processing parameters on mechanical properties of 3D-printed polyhydroxyalkanoates parts,” Virtual Phys. Prototyp., vol. 18, no. 1, 2023, doi: 10.1080/17452759.2022.2164734.
  • [11] O. Ulkir, I. Ertugrul, S. Ersoy, and B. Yağımlı, “The Effects of Printing Temperature on the Mechanical Properties of 3D-Printed Acrylonitrile Butadiene Styrene,” Appl. Sci., vol. 14, no. 8, p. 3376, Apr. 2024, doi: 10.3390/app14083376.
  • [12] F. Rivera-López, M. M. L. Pavón, E. C. Correa, and M. H. Molina, “Effects of Nozzle Temperature on Mechanical Properties of Polylactic Acid Specimens Fabricated by Fused Deposition Modeling,” Polymers (Basel)., vol. 16, no. 13, p. 1867, Jun. 2024, doi: 10.3390/polym16131867.
  • [13] E. C. R. de Melo, L. M. F. Lona, and R. P. Vieira, “Effects of filament extrusion temperature and 3D printing parameters on the structure and mechanical properties of poly(butylene adipate‐co‐terephthalate)/poly (lactic acid) blends,” Polym. Eng. Sci., vol. 65, no 3, Dec. 2024, doi: 10.1002/pen.27073.
  • [14] S. Rawal, A. M. Sidpara, and J. Paul, “A review on micro machining of polymer composites,” J. Manuf. Process., vol. 77, pp. 87–113, May 2022, doi: 10.1016/j.jmapro.2022.03.014.
  • [15] M. Altan and E. Altan, “Investigation of burr formation and surface roughness in drilling engineering plastics,” J. Brazilian Soc. Mech. Sci. Eng., vol. 36, no. 2, pp. 347–354, Feb. 2014, doi: 10.1007/s40430-013-0089-8.
  • [16] P. Shanmughasundaram and R. Subramanian, “Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites,” J. Mater. Res. Technol., vol. 3, no. 2, pp. 150–157, Apr. 2014, doi: 10.1016/j.jmrt.2014.03.008.
  • [17] M. A. Kadivar, R. Yousefi, J. Akbari, A. Rahi, and S. M. Nikouei, “Burr Size Reduction in Drilling of Al/SiC Metal Matrix Composite by Ultrasonic Assistance,” Adv. Mater. Res., vol. 410, pp. 279–282, Nov. 2011, doi: 10.4028/www.scientific.net/AMR.410.279.
  • [18] A. Saravanakumar and P. Sasikumar, “Assessment of factors influencing burr height on the machining of particle reinforced hybrid composites,” J. Mater. Environ. Sci., vol. 6, no. 6, pp. 1638–1645, 2015.
  • [19] A. A. Thakre and S. Soni, “Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology,” Eng. Sci. Technol. an Int. J., vol. 19, no. 3, pp. 1199–1205, Sep. 2016, doi: 10.1016/j.jestch.2016.02.007.
  • [20] A. Pramanik and A. K. Basak, “Effects of Input Parameters on the Hole Quality During the Drilling of Al Metal Matrix Composites,” Designs, vol. 8, no. 6, p. 111, Oct. 2024, doi: 10.3390/designs8060111.
  • [21] E. Emir, B. Özdemir, E. Bahçe, and G. Erener, “Investigation of Delamination in the Drilling of PLA Specimens with Different Lattice Structures,” Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 29, no. 2, pp. 708–719, 2024, doi: 10.53433/yyufbed.1401574.
  • [22] A. Lotfi, H. Li, and D. V. Dao, “Analytical and experimental investigation of the parameters in drilling flax/poly(lactic acid) bio-composite laminates,” Int. J. Adv. Manuf. Technol., vol. 109, no. 1–2, pp. 503–521, 2020, doi: 10.1007/s00170-020-05668-1.
  • [23] B. V. Kavad, A. B. Pandey, M. V. Tadavi, and H. C. Jakharia, “A Review Paper on Effects of Drilling on Glass Fiber Reinforced Plastic,” Procedia Technol., vol. 14, pp. 457–464, 2014, doi: 10.1016/j.protcy.2014.08.058.
  • [24] R. Pang, M. K. Lai, K. I. Ismail, and T. C. Yap, “The Effect of Printing Temperature on Bonding Quality and Tensile Properties of Fused Deposition Modelling 3d-Printed Parts,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1257, no. 1, p. 012031, 2022, doi: 10.1088/1757-899x/1257/1/012031.
  • [25] M.-H. Hsueh et al., “Effects of Printing Temperature and Filling Percentage on the Mechanical Behavior of Fused Deposition Molding Technology Components for 3D Printing,” Polymers (Basel)., vol. 13, no. 17, p. 2910, Aug. 2021, doi: 10.3390/polym13172910.
  • [26] M.-H. Hsueh et al., “Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling,” Polymers (Basel)., vol. 13, no. 11, p. 1758, May 2021, doi: 10.3390/polym13111758.
  • [27] V. Cojocaru, D. Frunzaverde, C. O. Miclosina, and G. Marginean, “The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review,” Polymers (Basel)., vol. 14, no. 5, 2022, doi: 10.3390/polym14050886.
  • [28] M. Baraheni, M. R. Shabgard, S. Amini, and F. Gholipour, “Experimental evaluation and optimization of parameters affecting delamination, geometrical tolerance and surface roughness in ultrasonic drilling of 3D-Printed PLA thermoplastic,” J. Thermoplast. Compos. Mater., pp. 1–30, 2024, doi: 10.1177/08927057241264803.

Investigation of Burr Formation and Circularity Error in Drilling of PLA Produced at Different Printing Temperatures with Machine Learning-Based Prediction

Yıl 2025, Cilt: 16 Sayı: 2, 421 - 429, 30.06.2025
https://doi.org/10.24012/dumf.1656898

Öz

In this study, it was aimed to investigate the effect of feed (0.1-0.15-0.2 mm/rev) and printing temperature (190-210-230°C) on the formation of burrs and circularity in the drilling of samples produced using polylactic acid (PLA) material with the fused deposition modelling (FDM) technique, which is an additive manufacturing (AM) method. In the results obtained, it was observed that the burr height increased with the increase of the feed in the drilling of the samples, and the burr height decreased with the increase of the printing temperature. The maximum burr height at the hole entrance was 0.32 mm (0.2 mm/rev, 190°C), while the maximum burr height at the hole exit was 0.37 mm (0.2 mm/rev, 190°C). The maximum circularity deviation at the hole entrance was 0.15 mm (0.2 mm/rev, 230°C) and the maximum circularity deviation at the hole exit was 0.1 mm (0.2 mm/rev, 190°C). In addition, prediction modelling for burr height and deviation from circularity was performed with an average success rate of R2 94%.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] X. Zhang, L. Chen, T. Mulholland, and T. A. Osswald, “Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling,” Polym. Adv. Technol., vol. 30, no. 8, pp. 2122–2135, Aug. 2019, doi: 10.1002/pat.4645.
  • [2] N. Naveed, “Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM),” Mater. Technol., vol. 36, no. 5, pp. 317–330, Apr. 2021, doi: 10.1080/10667857.2020.1758475.
  • [3] O. Tunçel, “The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens,” Eur. Mech. Sci., vol. 8, no. 1, pp. 11–18, Mar. 2024, doi: 10.26701/ems.1392387.
  • [4] A. W. Gebisa and H. G. Lemu, “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085,” Procedia Manuf., vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047.
  • [5] M. A. Albadrani, “Effects of Raster Angle on the Elasticity of 3D-Printed Polylactic Acid and Polyethylene Terephthalate Glycol,” Designs, vol. 7, no. 5, p. 112, Sep. 2023, doi: 10.3390/designs7050112.
  • [6] V. Mohanavel, K. S. Ashraff Ali, K. Ranganathan, J. Allen Jeffrey, M. M. Ravikumar, and S. Rajkumar, “The roles and applications of additive manufacturing in the aerospace and automobile sector,” Mater. Today Proc., vol. 47, pp. 405–409, 2021, doi: 10.1016/j.matpr.2021.04.596.
  • [7] P. K. Gurrala and S. P. Regalla, “Part strength evolution with bonding between filaments in fused deposition modelling,” Virtual Phys. Prototyp., vol. 9, no. 3, pp. 141–149, Jul. 2014, doi: 10.1080/17452759.2014.913400.
  • [8] M. Eryıldız, “Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation,” Eur. Mech. Sci., vol. 5, no. 3, pp. 116–120, 2021, doi: 10.26701/ems.881254.
  • [9] B. Vo, A. Ajibade, M. Rosengren, K. Pena, and M. Moran, “The Effect of 3D Printing Temperature on the Mechanical Properties of Polypropylene” J. of Undergraduate Chemical Eng. Rsch., vol. 8, no. 1, pp. 24-31, 2019.
  • [10] J. Ivorra-Martinez, M. Á. Peydro, J. Gomez-Caturla, L. Sanchez-Nacher, T. Boronat, and R. Balart, “The effects of processing parameters on mechanical properties of 3D-printed polyhydroxyalkanoates parts,” Virtual Phys. Prototyp., vol. 18, no. 1, 2023, doi: 10.1080/17452759.2022.2164734.
  • [11] O. Ulkir, I. Ertugrul, S. Ersoy, and B. Yağımlı, “The Effects of Printing Temperature on the Mechanical Properties of 3D-Printed Acrylonitrile Butadiene Styrene,” Appl. Sci., vol. 14, no. 8, p. 3376, Apr. 2024, doi: 10.3390/app14083376.
  • [12] F. Rivera-López, M. M. L. Pavón, E. C. Correa, and M. H. Molina, “Effects of Nozzle Temperature on Mechanical Properties of Polylactic Acid Specimens Fabricated by Fused Deposition Modeling,” Polymers (Basel)., vol. 16, no. 13, p. 1867, Jun. 2024, doi: 10.3390/polym16131867.
  • [13] E. C. R. de Melo, L. M. F. Lona, and R. P. Vieira, “Effects of filament extrusion temperature and 3D printing parameters on the structure and mechanical properties of poly(butylene adipate‐co‐terephthalate)/poly (lactic acid) blends,” Polym. Eng. Sci., vol. 65, no 3, Dec. 2024, doi: 10.1002/pen.27073.
  • [14] S. Rawal, A. M. Sidpara, and J. Paul, “A review on micro machining of polymer composites,” J. Manuf. Process., vol. 77, pp. 87–113, May 2022, doi: 10.1016/j.jmapro.2022.03.014.
  • [15] M. Altan and E. Altan, “Investigation of burr formation and surface roughness in drilling engineering plastics,” J. Brazilian Soc. Mech. Sci. Eng., vol. 36, no. 2, pp. 347–354, Feb. 2014, doi: 10.1007/s40430-013-0089-8.
  • [16] P. Shanmughasundaram and R. Subramanian, “Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites,” J. Mater. Res. Technol., vol. 3, no. 2, pp. 150–157, Apr. 2014, doi: 10.1016/j.jmrt.2014.03.008.
  • [17] M. A. Kadivar, R. Yousefi, J. Akbari, A. Rahi, and S. M. Nikouei, “Burr Size Reduction in Drilling of Al/SiC Metal Matrix Composite by Ultrasonic Assistance,” Adv. Mater. Res., vol. 410, pp. 279–282, Nov. 2011, doi: 10.4028/www.scientific.net/AMR.410.279.
  • [18] A. Saravanakumar and P. Sasikumar, “Assessment of factors influencing burr height on the machining of particle reinforced hybrid composites,” J. Mater. Environ. Sci., vol. 6, no. 6, pp. 1638–1645, 2015.
  • [19] A. A. Thakre and S. Soni, “Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology,” Eng. Sci. Technol. an Int. J., vol. 19, no. 3, pp. 1199–1205, Sep. 2016, doi: 10.1016/j.jestch.2016.02.007.
  • [20] A. Pramanik and A. K. Basak, “Effects of Input Parameters on the Hole Quality During the Drilling of Al Metal Matrix Composites,” Designs, vol. 8, no. 6, p. 111, Oct. 2024, doi: 10.3390/designs8060111.
  • [21] E. Emir, B. Özdemir, E. Bahçe, and G. Erener, “Investigation of Delamination in the Drilling of PLA Specimens with Different Lattice Structures,” Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 29, no. 2, pp. 708–719, 2024, doi: 10.53433/yyufbed.1401574.
  • [22] A. Lotfi, H. Li, and D. V. Dao, “Analytical and experimental investigation of the parameters in drilling flax/poly(lactic acid) bio-composite laminates,” Int. J. Adv. Manuf. Technol., vol. 109, no. 1–2, pp. 503–521, 2020, doi: 10.1007/s00170-020-05668-1.
  • [23] B. V. Kavad, A. B. Pandey, M. V. Tadavi, and H. C. Jakharia, “A Review Paper on Effects of Drilling on Glass Fiber Reinforced Plastic,” Procedia Technol., vol. 14, pp. 457–464, 2014, doi: 10.1016/j.protcy.2014.08.058.
  • [24] R. Pang, M. K. Lai, K. I. Ismail, and T. C. Yap, “The Effect of Printing Temperature on Bonding Quality and Tensile Properties of Fused Deposition Modelling 3d-Printed Parts,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1257, no. 1, p. 012031, 2022, doi: 10.1088/1757-899x/1257/1/012031.
  • [25] M.-H. Hsueh et al., “Effects of Printing Temperature and Filling Percentage on the Mechanical Behavior of Fused Deposition Molding Technology Components for 3D Printing,” Polymers (Basel)., vol. 13, no. 17, p. 2910, Aug. 2021, doi: 10.3390/polym13172910.
  • [26] M.-H. Hsueh et al., “Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling,” Polymers (Basel)., vol. 13, no. 11, p. 1758, May 2021, doi: 10.3390/polym13111758.
  • [27] V. Cojocaru, D. Frunzaverde, C. O. Miclosina, and G. Marginean, “The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review,” Polymers (Basel)., vol. 14, no. 5, 2022, doi: 10.3390/polym14050886.
  • [28] M. Baraheni, M. R. Shabgard, S. Amini, and F. Gholipour, “Experimental evaluation and optimization of parameters affecting delamination, geometrical tolerance and surface roughness in ultrasonic drilling of 3D-Printed PLA thermoplastic,” J. Thermoplast. Compos. Mater., pp. 1–30, 2024, doi: 10.1177/08927057241264803.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Ender Emir 0000-0003-4972-5064

Proje Numarası -
Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 13 Mart 2025
Kabul Tarihi 7 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE E. Emir, “Investigation of Burr Formation and Circularity Error in Drilling of PLA Produced at Different Printing Temperatures with Machine Learning-Based Prediction”, DÜMF MD, c. 16, sy. 2, ss. 421–429, 2025, doi: 10.24012/dumf.1656898.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456