Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical investigation of the effect of intercooler manifold inlet geometry on thermal and flow behavior in hydrogen fuel cell energy systems

Yıl 2025, Cilt: 16 Sayı: 2, 431 - 443, 30.06.2025
https://doi.org/10.24012/dumf.1672063

Öz

Global net-zero emission targets are directing the transportation sector towards alternative energy systems. Hydrogen fuel cell vehicles stand out as a low-carbon solution, particularly in heavy-duty transport applications. Effective thermal energy management is critically important for the sustainable and efficient operation of these systems. In this study, the energy efficiency of an intercooler developed for hydrogen fuel cell vehicles was investigated. Two different designs were considered: the first model with a single-stage inlet structure, and the second model with a dual-stage inlet structure. For both models, thermal energy and flow behavior were analyzed using computational fluid dynamics (CFD) at five different air inlet velocities. Numerical results demonstrated that Model 2 offered significant advantages over Model 1. Specifically, at an inlet velocity of 5 m/s, a 24.44% increase in the ratio of heat transfer performance to flow resistance (j/f) was achieved. Simultaneously, a 10.71% reduction in pressure drop was observed. Moreover, Model 2 exhibited a more homogeneous outlet temperature distribution, with more pronounced temperature reduction near the wall regions. These findings indicate that inlet geometry is a critical parameter in intercooler design for enhancing energy efficiency in energy systems

Kaynakça

  • [1] Akyuz, E., Tezer, T. (2025). Techno-economic feasibility and regression analysis of green hydrogen production from solar and wind energy in Türkiye. International Journal of Hydrogen Energy, Volume 142, 27 June 2025, pp. 1184-1195, https://doi.org/10.1016/j.ijhydene.2025.02.151
  • [2] Y. Xiong, F. Wang, D. Zhao, X. Sun, F. Ren, M. Zhao, J. Hao, Y. Wu, S. Zhang, “Cradle-to-gate GHG emissions and decarbonization potentials of minivan-equipped hydrogen fuel cell system, ”Resources, Conservation and Recycling, vol. 212, no. 107877, Jan. 2025 https://doi.org/10.1016/j.resconrec.2024.107877.
  • [3] T. M. Navinkumar, C. Bharatiraja, “Sustainable hydrogen energy fuel cell electric vehicles: A critical review of system components and innovative development recommendations,” Renewable and Sustainable Energy Reviews, vol. 215, no. 115601, June 2025. https://doi.org/10.1016/j.rser.2025.115601.
  • [4] M. Genovese, D. Blekhman, M. Dray, P. Fragiacomo, “Improving chiller performance and energy efficiency in hydrogen station operation by tuning the auxiliary cooling” International Journal of Hydrogen Energy, vol. 47, no. 4, pp. 2532-2546, Jan. 2022. https://doi.org/10.1016/j.ijhydene.2021.10.156
  • [5] Y. Zhou, J. Kang, B. Chen, W. Zheng, C. Zhang, P. Ming, F. Pan, J. Wang, B. Li, “Formation mechanism and morphology control of cracks in PEMFC catalyst layer during fabrication process: A review,” Advances in Colloid and Interface Science, vol. 340, no. 103468, June 2025. https://doi.org/10.1016/j.cis.2025.103468
  • [6] P. K. Thiyagarajan, N. K. Gokuldas, G. Srinavasa, A. K. Rajendran, K. S. Saravanakumar, M. Vasudevan, M. Kannan, C. Durga Prasad, A. A. Aden, “Investigating the Combinations of Operating Parameters of PEMFC Computational Results Using the Taguchi Method,” International Journal of Thermofluids, vol. 27, no. 101162, May 2025. https://doi.org/10.1016/j.ijft.2025.101162
  • [7] W. Li, Y. Wang, P. Zhou, F. He, S. Gao, C. Li, “Simulation analysis of BOP thermal management system for hydrogen fuel cell bus,” Process Safety and Environmental Protection, vol. 190, no. part B pp. 264-275, Oct. 2024. https://doi.org/10.1016/j.psep.2024.08.046
  • [8] C. Yu, W. Zhang, X. Xue, J. Lou, G. Lao, “Analysis of water-cooled thermal characteristics,” Energies, vol. 14 (24), no. 8332, Dec. 2021. https://doi.org/10.3390/en14248332
  • [9] Y. Li, Z. Hu, Y. Zhang, J. Li, L. Xu, M. Ouyang, “Optimal performance and preliminary parameter matching for hydrogen fuel cell powertrain system of electric aircraft,” eTransportation, 21, 100342, Sept. 2024. https://doi.org/10.1016/j.etran.2024.100342.
  • [10] Kilic, G. A. (2025). Performance Evaluation of Triply Periodic Minimal Surface Heat Exchangers Using Nanofluids at High Flow Rates for Enhanced Energy Efficiency. Applied Sciences, 15(8), 4140.
  • [11] Gül, M., Akyüz, E. (2023). Techno-economic viability and future price projections of photovoltaic-powered green hydrogen production in strategic regions of Turkey. Journal of cleaner production, 430, 139627.
  • [12] F. Zhang, B. Zu, B. Wang, Z. Qin, J. Yao, Z. Wang, F. Linhao, K. Jiao, “Developing long-durability proton-exchange membrane fuel cells,” Joule, vol. 9, no. 3, 101853, March 2025. https://doi.org/10.1016/j.joule.2025.101853.
  • [13] Y. Zhang, Z. Xiao, X. Zhao, J. Wang, Y. Wang, J. Yu, “Experimental and Simulation Study of Proton Exchange Membrane Fuel Cell with 12 µm Thick Membrane over the Temperature Range of 80° C to 120° C,” Membranes, vol. 15(3), no. 72, Feb. 2025. https://doi.org/10.3390/membranes15030072.
  • [14] J. Tian, M. S. Ismail, D. Ingham, K. J. Hughes, L. Ma, M. Pourkashanian, “Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 33(8), pp. 2778-2799, June 2023. https://doi.org/10.1108/HFF-02-2023-0075.
  • [15] S. Y. Kim, H. K. Cho, “Turbulence model assessment and heat transfer phenomena inside a rectangular channel under forced and mixed convection,” International Journal of Heat and Mass Transfer, vol. 185, no. 122388, Apr. 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122388.
  • [16] R. Kaiser, C. Y. Ahn, Y. H. Kim, J. C. Park, “Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation,” International Journal of Hydrogen Energy, vol. 51, pp. 1326-1344, Jan. 2024. https://doi.org/10.1016/j.ijhydene.2023.05.025.
  • [17] H. Djemel, S. Chtourou, M. Baccar, “Three-dimensional numerical study of a new intercooler design,” International Journal of Thermofluids, vol. 17, no. 100263, Feb. 2023. https://doi.org/10.1016/j.ijft.2022.100263.
  • [18] C. Q. Duong, P. X. Pham, T. D. Luong, “Experimental and Theoretical Investigations of a Plate-Fin Water Intercooler Equipped in a Boosted Diesel Engine,” ASME Journal of Heat and Mass Transfer, vol. 145(2), no. 022902, Nov. 2022. https://doi.org/10.1115/1.4056142.
  • [19] Q. Zhang, S. Qin, R. Ma, “Simulation and experimental investigation of the wavy fin-and-tube intercooler,” Case Studies in Thermal Engineering, vol. 8, pp. 32-40, Sept. 2016. https://doi.org/10.1016/j.csite.2016.04.003.
  • [20] A. C. Patrao, I. Jonsson, C. Xisto, A. Lundbladh, T. Grönstedt, “Compact heat exchangers for hydrogen-fueled aero engine intercooling and recuperation,” Applied Thermal Engineering, vol. 243, no. 122538, Apr. 2024 https://doi.org/10.1016/j.applthermaleng.2024.122538.
  • [21] S. M. Baek, S. H. Yu, J. H. Nam, C. J. Kim, “A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs,” Applied Thermal Engineering, vol. 31(8-9), no. 8-9, pp. 1427-1434, June 2011. https://doi.org/10.1016/j.applthermaleng.2011.01.009.
  • [22] G. Zhang, Z. Qu, W. Q. Tao, X. Wang, L. Wu, S. Wu, X. Xie, C. Tongsh, W. Huo, Z. Bao, K. Jiao, Y. Wang, “Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges,” Chemical Reviews, vol. 123(3), no. 3, pp. 989-1039, Dec. 2022. https://doi.org/10.1021/acs.chemrev.2c00539.
  • [23] ANSYS Inc, ANSYS Fluent 2023 R2 User's Guide, 2023. ANSYS Inc.
  • [24] Kilic, G. A. (2023). An experimental analysis on the effects of passive liquid cooling system on thermal management system. International Journal of Thermofluids, 18, 100370. https://doi.org/10.1016/j.ijft.2023.100370.
  • [25] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007. Fundamentals of Heat and Mass Transfer, 6th ed. John Wiley & Sons, New York.
  • [26] G.A. Kilic, E. Yalcin, A.A. Aydin (2019). Optimum operating temperature range of phase change materials used in cold storage applications: A case study. In Environmentally-benign energy solutions, pp. 711-726. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-20637-6_35.
  • [27] M. Z. Saghir, G. A. Kilic, “Experimental Forced Convection Study Using a Triply Periodic Minimal Surface Porous Structure with a Nanofluid: Comparison with Numerical Modeling,” Applied Sciences, vol. 14(17), no. 7594, Aug. 2024. https://doi.org/10.3390/app14177594.
  • [28] X. Tang, Q. Shi, Z. Li, S. Xu, M. Li, “Research on the influence of the guide vane on the performances of intercooler based on the end-to-end predication model,” International Journal of Heat and Mass Transfer, vol. 192, no.122903, Aug 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122903.
  • [29] S. Kakac, R. K. Shah, W. Aung, Handbook of single-phase convective heat transfer, 1987.
  • [30] R. L. Webb, N. H. Kim, “Principles of Enhanced Heat Transfer,” Journal of Enhanced Heat Transfer, vol. 17, no. 4, pp. 293–300, 2010.
  • [31] R. M. Manglik, A. E. Bergles, “Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—Transition and turbulent flows,” Journal of Heat Transfer, vol. 117, no. 3, pp. 526–528, Nov. 1993. https://doi.org/10.1115/1.2911384.
  • [32] J. Dong, J. Chen, Y. Chen, Y. Zhou, “Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers,” Energy Conversion and Management, vol. 48, no. 5, pp. 1506–1515, May 2007. https://doi.org/10.1016/j.enconman.2006.11.023.
  • [33] H. Atalay, M. T. Çoban, “Modeling of cross flow air-gas heat exchanger using finite difference method,” Journal of Polytechnic, vol. 21(1), pp. 155-163, March 2018. https://doi.org/10.2339/politeknik.389585.
  • [34] A. Ali, M. Houda, A. Waqar, M.B. Khan, A. O. Deifalla (2024). A review on application of hydrogen in gas turbines with intercooler adjustments. Results in Engineering, 101979. https://doi.org/10.1016/j.rineng.2024.101979.
  • [35] A. Kibishov, G. A. Kilic, N. Rustamov, N. Genc, “Thermal Analysis of Radiation Heat Transfer of Improved Fractal Solar Collectors,” Applied Sciences, vol. 14(23), no. 11155, Nov. 2024. https://doi.org/10.3390/app142311155.

Hidrojen yakıt hücreli enerji sistemlerinde kullanılan ara soğutucu manifold giriş yapısının ısıl ve akış davranışına etkisinin sayısal incelemesi

Yıl 2025, Cilt: 16 Sayı: 2, 431 - 443, 30.06.2025
https://doi.org/10.24012/dumf.1672063

Öz

Küresel ölçekte net sıfır emisyon hedefleri, taşımacılık sektörünü alternatif enerji sistemlerine yönlendirmektedir. Hidrojen yakıt hücreli araçlar, özellikle ağır vasıta taşımacılığında düşük karbonlu bir çözüm olarak öne çıkmaktadır. Bu sistemlerin sürdürülebilir ve verimli çalışması için etkin termal enerji yönetimi kritik öneme sahiptir. Bu çalışmada, hidrojen yakıt hücreli taşıtlara yönelik geliştirilen bir ara soğutucunun enerji verimliliği incelenmiştir. Çalışmada tek kademeli giriş yapısına sahip birinci model ve çift kademeli giriş yapısına sahip ikinci model olmak üzere iki farklı tasarım ele alınmıştır. Her iki model için beş farklı hava giriş hızında termal enerji ve akış davranışları hesaplamalı akışkanlar dinamiği (CFD) yöntemiyle analiz edilmiştir. Sayısal sonuçlar, model 2’nin model 1’e kıyasla önemli avantajlar sunduğunu göstermiştir. Özellikle 5 m/s giriş hızında, ısı transfer performansının akış direncine oranı (j/f ) değerinde %22,50 artış elde edilmiştir. Aynı zamanda basınç kaybında %10,30 azalma sağlanmıştır. Ayrıca, model 2 çıkış sıcaklık dağılımlarında daha homojen bir yapı sergilemiş ve cidar bölgelerinde sıcaklık düşüşü daha belirgin şekilde gözlemlenmiştir. Bu bulgular, enerji sistemlerinde ara soğutucu tasarımında giriş geometrisinin enerji verimliliği açısından belirleyici bir parametre olduğunu göstermektedir

Kaynakça

  • [1] Akyuz, E., Tezer, T. (2025). Techno-economic feasibility and regression analysis of green hydrogen production from solar and wind energy in Türkiye. International Journal of Hydrogen Energy, Volume 142, 27 June 2025, pp. 1184-1195, https://doi.org/10.1016/j.ijhydene.2025.02.151
  • [2] Y. Xiong, F. Wang, D. Zhao, X. Sun, F. Ren, M. Zhao, J. Hao, Y. Wu, S. Zhang, “Cradle-to-gate GHG emissions and decarbonization potentials of minivan-equipped hydrogen fuel cell system, ”Resources, Conservation and Recycling, vol. 212, no. 107877, Jan. 2025 https://doi.org/10.1016/j.resconrec.2024.107877.
  • [3] T. M. Navinkumar, C. Bharatiraja, “Sustainable hydrogen energy fuel cell electric vehicles: A critical review of system components and innovative development recommendations,” Renewable and Sustainable Energy Reviews, vol. 215, no. 115601, June 2025. https://doi.org/10.1016/j.rser.2025.115601.
  • [4] M. Genovese, D. Blekhman, M. Dray, P. Fragiacomo, “Improving chiller performance and energy efficiency in hydrogen station operation by tuning the auxiliary cooling” International Journal of Hydrogen Energy, vol. 47, no. 4, pp. 2532-2546, Jan. 2022. https://doi.org/10.1016/j.ijhydene.2021.10.156
  • [5] Y. Zhou, J. Kang, B. Chen, W. Zheng, C. Zhang, P. Ming, F. Pan, J. Wang, B. Li, “Formation mechanism and morphology control of cracks in PEMFC catalyst layer during fabrication process: A review,” Advances in Colloid and Interface Science, vol. 340, no. 103468, June 2025. https://doi.org/10.1016/j.cis.2025.103468
  • [6] P. K. Thiyagarajan, N. K. Gokuldas, G. Srinavasa, A. K. Rajendran, K. S. Saravanakumar, M. Vasudevan, M. Kannan, C. Durga Prasad, A. A. Aden, “Investigating the Combinations of Operating Parameters of PEMFC Computational Results Using the Taguchi Method,” International Journal of Thermofluids, vol. 27, no. 101162, May 2025. https://doi.org/10.1016/j.ijft.2025.101162
  • [7] W. Li, Y. Wang, P. Zhou, F. He, S. Gao, C. Li, “Simulation analysis of BOP thermal management system for hydrogen fuel cell bus,” Process Safety and Environmental Protection, vol. 190, no. part B pp. 264-275, Oct. 2024. https://doi.org/10.1016/j.psep.2024.08.046
  • [8] C. Yu, W. Zhang, X. Xue, J. Lou, G. Lao, “Analysis of water-cooled thermal characteristics,” Energies, vol. 14 (24), no. 8332, Dec. 2021. https://doi.org/10.3390/en14248332
  • [9] Y. Li, Z. Hu, Y. Zhang, J. Li, L. Xu, M. Ouyang, “Optimal performance and preliminary parameter matching for hydrogen fuel cell powertrain system of electric aircraft,” eTransportation, 21, 100342, Sept. 2024. https://doi.org/10.1016/j.etran.2024.100342.
  • [10] Kilic, G. A. (2025). Performance Evaluation of Triply Periodic Minimal Surface Heat Exchangers Using Nanofluids at High Flow Rates for Enhanced Energy Efficiency. Applied Sciences, 15(8), 4140.
  • [11] Gül, M., Akyüz, E. (2023). Techno-economic viability and future price projections of photovoltaic-powered green hydrogen production in strategic regions of Turkey. Journal of cleaner production, 430, 139627.
  • [12] F. Zhang, B. Zu, B. Wang, Z. Qin, J. Yao, Z. Wang, F. Linhao, K. Jiao, “Developing long-durability proton-exchange membrane fuel cells,” Joule, vol. 9, no. 3, 101853, March 2025. https://doi.org/10.1016/j.joule.2025.101853.
  • [13] Y. Zhang, Z. Xiao, X. Zhao, J. Wang, Y. Wang, J. Yu, “Experimental and Simulation Study of Proton Exchange Membrane Fuel Cell with 12 µm Thick Membrane over the Temperature Range of 80° C to 120° C,” Membranes, vol. 15(3), no. 72, Feb. 2025. https://doi.org/10.3390/membranes15030072.
  • [14] J. Tian, M. S. Ismail, D. Ingham, K. J. Hughes, L. Ma, M. Pourkashanian, “Multiphase, three-dimensional PEM fuel cell numerical model with a variable cross-sectional area flow channel,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 33(8), pp. 2778-2799, June 2023. https://doi.org/10.1108/HFF-02-2023-0075.
  • [15] S. Y. Kim, H. K. Cho, “Turbulence model assessment and heat transfer phenomena inside a rectangular channel under forced and mixed convection,” International Journal of Heat and Mass Transfer, vol. 185, no. 122388, Apr. 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122388.
  • [16] R. Kaiser, C. Y. Ahn, Y. H. Kim, J. C. Park, “Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation,” International Journal of Hydrogen Energy, vol. 51, pp. 1326-1344, Jan. 2024. https://doi.org/10.1016/j.ijhydene.2023.05.025.
  • [17] H. Djemel, S. Chtourou, M. Baccar, “Three-dimensional numerical study of a new intercooler design,” International Journal of Thermofluids, vol. 17, no. 100263, Feb. 2023. https://doi.org/10.1016/j.ijft.2022.100263.
  • [18] C. Q. Duong, P. X. Pham, T. D. Luong, “Experimental and Theoretical Investigations of a Plate-Fin Water Intercooler Equipped in a Boosted Diesel Engine,” ASME Journal of Heat and Mass Transfer, vol. 145(2), no. 022902, Nov. 2022. https://doi.org/10.1115/1.4056142.
  • [19] Q. Zhang, S. Qin, R. Ma, “Simulation and experimental investigation of the wavy fin-and-tube intercooler,” Case Studies in Thermal Engineering, vol. 8, pp. 32-40, Sept. 2016. https://doi.org/10.1016/j.csite.2016.04.003.
  • [20] A. C. Patrao, I. Jonsson, C. Xisto, A. Lundbladh, T. Grönstedt, “Compact heat exchangers for hydrogen-fueled aero engine intercooling and recuperation,” Applied Thermal Engineering, vol. 243, no. 122538, Apr. 2024 https://doi.org/10.1016/j.applthermaleng.2024.122538.
  • [21] S. M. Baek, S. H. Yu, J. H. Nam, C. J. Kim, “A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs,” Applied Thermal Engineering, vol. 31(8-9), no. 8-9, pp. 1427-1434, June 2011. https://doi.org/10.1016/j.applthermaleng.2011.01.009.
  • [22] G. Zhang, Z. Qu, W. Q. Tao, X. Wang, L. Wu, S. Wu, X. Xie, C. Tongsh, W. Huo, Z. Bao, K. Jiao, Y. Wang, “Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges,” Chemical Reviews, vol. 123(3), no. 3, pp. 989-1039, Dec. 2022. https://doi.org/10.1021/acs.chemrev.2c00539.
  • [23] ANSYS Inc, ANSYS Fluent 2023 R2 User's Guide, 2023. ANSYS Inc.
  • [24] Kilic, G. A. (2023). An experimental analysis on the effects of passive liquid cooling system on thermal management system. International Journal of Thermofluids, 18, 100370. https://doi.org/10.1016/j.ijft.2023.100370.
  • [25] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007. Fundamentals of Heat and Mass Transfer, 6th ed. John Wiley & Sons, New York.
  • [26] G.A. Kilic, E. Yalcin, A.A. Aydin (2019). Optimum operating temperature range of phase change materials used in cold storage applications: A case study. In Environmentally-benign energy solutions, pp. 711-726. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-20637-6_35.
  • [27] M. Z. Saghir, G. A. Kilic, “Experimental Forced Convection Study Using a Triply Periodic Minimal Surface Porous Structure with a Nanofluid: Comparison with Numerical Modeling,” Applied Sciences, vol. 14(17), no. 7594, Aug. 2024. https://doi.org/10.3390/app14177594.
  • [28] X. Tang, Q. Shi, Z. Li, S. Xu, M. Li, “Research on the influence of the guide vane on the performances of intercooler based on the end-to-end predication model,” International Journal of Heat and Mass Transfer, vol. 192, no.122903, Aug 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122903.
  • [29] S. Kakac, R. K. Shah, W. Aung, Handbook of single-phase convective heat transfer, 1987.
  • [30] R. L. Webb, N. H. Kim, “Principles of Enhanced Heat Transfer,” Journal of Enhanced Heat Transfer, vol. 17, no. 4, pp. 293–300, 2010.
  • [31] R. M. Manglik, A. E. Bergles, “Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—Transition and turbulent flows,” Journal of Heat Transfer, vol. 117, no. 3, pp. 526–528, Nov. 1993. https://doi.org/10.1115/1.2911384.
  • [32] J. Dong, J. Chen, Y. Chen, Y. Zhou, “Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers,” Energy Conversion and Management, vol. 48, no. 5, pp. 1506–1515, May 2007. https://doi.org/10.1016/j.enconman.2006.11.023.
  • [33] H. Atalay, M. T. Çoban, “Modeling of cross flow air-gas heat exchanger using finite difference method,” Journal of Polytechnic, vol. 21(1), pp. 155-163, March 2018. https://doi.org/10.2339/politeknik.389585.
  • [34] A. Ali, M. Houda, A. Waqar, M.B. Khan, A. O. Deifalla (2024). A review on application of hydrogen in gas turbines with intercooler adjustments. Results in Engineering, 101979. https://doi.org/10.1016/j.rineng.2024.101979.
  • [35] A. Kibishov, G. A. Kilic, N. Rustamov, N. Genc, “Thermal Analysis of Radiation Heat Transfer of Improved Fractal Solar Collectors,” Applied Sciences, vol. 14(23), no. 11155, Nov. 2024. https://doi.org/10.3390/app142311155.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Sayısal Yöntemler, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gülenay Alevay Kılıç 0000-0002-3513-8785

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 8 Nisan 2025
Kabul Tarihi 17 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE G. A. Kılıç, “Hidrojen yakıt hücreli enerji sistemlerinde kullanılan ara soğutucu manifold giriş yapısının ısıl ve akış davranışına etkisinin sayısal incelemesi”, DÜMF MD, c. 16, sy. 2, ss. 431–443, 2025, doi: 10.24012/dumf.1672063.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456