Derleme
BibTex RIS Kaynak Göster

Elektrikli Araç Motor Gücündeki Eğilimler: Performans ve Verimlilik Üzerine Karşılaştırmalı Bir Çalışma

Yıl 2025, Cilt: 16 Sayı: 4, 901 - 918, 30.12.2025
https://doi.org/10.24012/dumf.1755155

Öz

Elektrikli araçlar (EV’ler), çevresel sürdürülebilirlik ve enerji verimliliği açısından sundukları avantajlar nedeniyle modern ulaşım sistemlerinin merkezinde giderek daha fazla yer almaktadır. Bu gelişim sürecinde, elektrikli tahrik motorları; performans, menzil, enerji tüketimi ve üretim maliyetleri gibi temel kriterlerde belirleyici bir rol oynamaktadır. Bu çalışmada, elektrikli araçlarda yaygın olarak kullanılan üç temel motor tipi Sargılı Rotorlu Senkron Motor (WRSM), Kalıcı Mıknatıslı Senkron Motor (PMSM) ve Endüksiyon Motoru (IM) teknik performans, enerji verimliliği ve uygulama segmentleri açısından çok boyutlu bir biçimde değerlendirilmiştir. Karşılaştırmalı analizler, özellikle PMSM motorlarının yüksek tork üretimi ve düşük enerji tüketimi sayesinde orta sınıf araçlar için optimal güç/ağırlık oranı sunduğunu ortaya koymaktadır. Kompakt yapıları ve yüksek verimlilik seviyeleri, bu motorları günümüzde birçok üretici için standart tercih hâline getirmiştir. Öte yandan, WRSM motorları nadir toprak elementlerine bağımlılığı ortadan kaldırmaları ve alan zayıflatma yetenekleri sayesinde uzun vadeli sürdürülebilirlik hedefleri için güçlü bir alternatif sunmaktadır. WRSM motorlarının yüksek sıcaklık toleransı, düşük bakım gereksinimi ve geniş hız aralığında çalışma kabiliyeti, gelecekte daha yaygın şekilde benimsenme potansiyelini göstermektedir. Segment bazlı değerlendirmelerde, ekonomik sınıftaki araçların düşük ağırlıkları ve sınırlı güç gereksinimleri sayesinde birim enerji başına daha uzun menzil sundukları belirlenmiştir. Bu durum, özellikle kentsel kullanım amaçlı kompakt elektrikli araçlar için enerji tasarrufu açısından önemli bir avantajdır. Buna karşılık, lüks ve yüksek performans segmentindeki araçlar, daha büyük batarya kapasitelerine rağmen daha yüksek enerji tüketimi sergilemektedir; bu segmentlerde verimlilikten ziyade ivmelenme, çekiş gücü ve sürüş konforu gibi unsurlar öncelik kazanmaktadır. Genel bulgular, motor gücünün yalnızca performansta değil, aynı zamanda enerji tüketimi, menzil kapasitesi ve segment bazlı ürün konumlandırmasında da kritik bir rol oynadığını ortaya koymaktadır. Ayrıca, WRSM gibi alternatif motor mimarileri üzerine artan araştırma ve geliştirme çalışmaları, bu motorların gelecekte hem ekonomik hem de çevresel açıdan daha cazip hâle gelebileceğini göstermektedir. Bu bağlamda, sürdürülebilir elektrikli ulaşım hedeflerine ulaşmak adına motor teknolojileri üzerine disiplinler arası araştırmaların yoğunlaştırılması önerilmektedir.

Kaynakça

  • [1] F. Kong and X. Liu, “Sustainable Transportation with Electric Vehicles,” Found. Trends Electr. Energy Syst., vol. 2, no. 1, pp. 1–132, 2017, doi: 10.1561/3100000016.
  • [2] “Metropolleri dönüştürmek ulaşımda zafere işaret eder,” Dünya Gazetesi.
  • [3] A. SADIKI, “Control of Permanent Magnet Syncronous Motor in Electric Vehicles,” Yöktez, 2022.
  • [4] A. Dall-Orsoletta, P. Ferreira, and G. Gilson Dranka, “Low-carbon technologies and just energy transition: Prospects for electric vehicles,” Energy Convers. Manag. X, vol. 16, no. May, 2022, doi: 10.1016/j.ecmx.2022.100271.
  • [5] W. J. Sweeting, A. R. Hutchinson, and S. D. Savage, “Factors affecting electric vehicle energy consumption,” Int. J. Sustain. Eng., vol. 4, no. 3, pp. 192–201, 2011, doi: 10.1080/19397038.2011.592956.
  • [6] H. J, A. R. Y, P. S, and A. K. L, “Electric vehicle adoption toward sustainable transportation solution: key drivers and implications,” Int. J. Energy Sect. Manag., 2024, doi: 10.1108/IJESM-04-2024-0015.
  • [7] M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency – A review,” Appl. Energy, vol. 357, p. 122496, Mar. 2024, doi: 10.1016/j.apenergy.2023.122496.
  • [8] Tesla, “Model 3 2024+ owner’s manual,” 2024.
  • [9] Tesla, “Model X 2021-2024 owners manual n.d.”
  • [10] N. Leaf, “Dolu Batarya n.d.”.
  • [11] Türkiye BMW, “Yeni BMW i3 Elektrikli ve Heyecan Verici n.d.”
  • [12] “Audi e-tron.”
  • [13] A. Babangida and P. Szemes, “Electric Vehicle Modeling and Simulation of Volkswagen Crafter with 2.0 TDI CR Diesel Engine,” Rcent Innov Mechatronics 2021, p. 8, doi: 10.17667/riim.2021.1/1.
  • [14] A. Garcia, S. Filipe, C. Fernandes, C. Estevão, and G. Ramos, “The new Taycan and the new Taycan Cross Turismo”.
  • [15] Ford, “Ford Mustang,” 2024.
  • [16] Chevrolet, “Bolt EUV Owners Manual 2022”.
  • [17] Z. Cao, A. Mahmoudi, S. Kahourzade, and W. L. Soong, “An Overview of Electric Motors for Electric Vehicles,” in 2021 31st Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2021, pp. 1–6. doi: 10.1109/AUPEC52110.2021.9597739.
  • [18] M. S. Patil and S. S. Dhamal, “A Detailed Motor Selection for Electric Vehicle Traction System,” 2019 Third Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 679–684, 2019.
  • [19] Z. Qianfan, C. Shumei, and T. Xinjia, “Hybrid Switched Reluctance Motor Applied in Electric Vehicles,” no. 2, pp. 359–363, 2007.
  • [20] Y. Xiao, M. Nemec, L. J. Borle, V. Sreeram, and H. H. C. Iu, “Regenerative braking of series-wound brushed DC electric motors for electric vehicles,” Proc. 2012 7th IEEE Conf. Ind. Electron. Appl. ICIEA 2012, pp. 1657–1662, 2012, doi: 10.1109/ICIEA.2012.6360991.
  • [21] A. Zarma, A. A. Galadima, M. A. Aminu, and E. Engineering, “A Review of Motors for Electric Vehicles,” in International Power Engineering Exhibition & Conference, 2019, pp. 11–14.
  • [22] P. Oy, “Sähköautojen moottorien purku ja kierrätys 2023”.
  • [23] J. Edmondson, S. Siddiqi, and M. Takahashi, “Electric Motors for Electric Vehicles 2025-2035: Technologies, Materials, Markets, and Forecasts,” IDTechEx.
  • [24] A. Gupta, T. Kim, T. Park, and C. Lee, “Intelligent direct torque control of brushless DC motors for hybrid electric vehicles,” in 5th IEEE Vehicle Power and Propulsion Conference, VPPC ’09, 2009. doi: 10.1109/VPPC.2009.5289860.
  • [25] Y. Zhu, X. Cao, and S. Cui, “Design of Brushless DC motor Drive System for Electric Vehicle Applications,” 2016. doi: 10.2991/ameii-16.2016.219.
  • [26] M. C. Joshi and S. Samanta, “Modeling and control of bidirectional DC-DC converter fed PMDC motor for electric vehicles,” in 2013 Annual IEEE India Conference, INDICON 2013, 2013. doi: 10.1109/INDCON.2013.6726091.
  • [27] R. G. Chougale and C. R. Lakade, “Regenerative braking system of electric vehicle driven by brushless DC motor using fuzzy logic,” in IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, 2018. doi: 10.1109/ICPCSI.2017.8392101.
  • [28] N. Hashemnia and B. Asaei, “Comparative study of using different electric motors in the electric vehicles,” in Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08, 2008. doi: 10.1109/ICELMACH.2008.4800157.
  • [29] D. M. B. and M. K. Kazimierczuk, “DC-DC CONVERTERS FOR ELECTRIC VEHiCLE APPLICATIONS,” IEEE Trans. Veh. Technol., vol. 5, no. 4, pp. 1–1, 2018.
  • [30] N. A. Metin, A. Boyar, and E. Kabalci, “Design and Analysis of Bi-directional DC-DC Driver for Electric Vehicles,” in Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 2019. doi: 10.1109/GPECOM.2019.8778532.
  • [31] D. Cajander and H. Le-Huy, “Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation,” Math. Comput. Simul., vol. 71, no. 4–6, pp. 333–344, 2006, doi: 10.1016/j.matcom.2006.02.025.
  • [32] A. T. Waghe and S. K. Patil, “A bidirectional DC-DC converter fed separately excited DC motor electric vehicle application,” in International Conference on Emerging Trends in Information Technology and Engineering, ic-ETITE 2020, 2020. doi: 10.1109/ic-ETITE47903.2020.421.
  • [33] K. Sedef, A. Maheri, A. Daadbin, and M. Yilmaz, “A comparative study of the performance of DC permanent magnet and AC induction motors in urban electric cars,” in 2nd International Symposium on Environment Friendly Energies and Applications, EFEA 2012, 2012. doi: 10.1109/EFEA.2012.6294077.
  • [34] L. Zaccarian, “DC motors : dynamic model and control techniques Magnetic considerations on rotating coils Magnetic field and conductors”.
  • [35] N. Mahajan and S. Deshpande, “Study of Nonlinear Behavior of DC Motor Using,” Int J Sci Res Publ, vol. 3, pp. 1–6, 2013.
  • [36] M. M. Hussain, A. Rashid Mustafa, M. A. Chaudary, and A. Razaq, “Design and Implementation of Hybrid Vehicle using Control of DC Electric Motor,” in 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings, 2019. doi: 10.1109/UPEC.2019.8893604.
  • [37] C. S. Hearn, D. A. Weeks, R. C. Thompson, and D. Chen, “Electric vehicle modeling utilizing DC motor equations,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2010. doi: 10.1109/AIM.2010.5695785.
  • [38] A. Al Mamun, S. Arfin, and S. Khan, “High gain DC-DC converter for three-wheeler electric vehicles,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 - Proceedings, 2021. doi: 10.1109/IEMTRONICS52119.2021.9422579.
  • [39] B. Carson Groen, “Investigation of DC Motors for Electric and Hybrid Electric Motor Vehicle Applications Using an Infinitely Variable Transmission Benjamin,” Brigham Young University, 2011.
  • [40] M. C. Joshi, S. Samanta, and G. Srungavarapu, “Battery ultracapacitor based DC motor drive for electric vehicles,” in TENSYMP 2017 - IEEE International Symposium on Technologies for Smart Cities, 2017. doi: 10.1109/TENCONSpring.2017.8070057.
  • [41] T. Kim, H. W. Lee, L. Parsa, and M. Ehsani, “Optimal power and torque control of a brushless DC (BLDC) motor/generator drive in electric and hybrid electric vehicles,” in Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006. doi: 10.1109/IAS.2006.256695.
  • [42] S. I. Urazov, S. A. Ivanova, and O. I. Khalupo, “The calculation of asynchronous motors characteristics based on the T-shaped equivalent circuit according to catalogued data,” IOP Conf. Ser. Earth Environ. Sci., vol. 949, no. 1, 2022, doi: 10.1088/1755-1315/949/1/012130.
  • [43] H. Gokozan, “Traction Motors and Motors Drivers Used in Electric Vehicles,” Eur. J. Sci. Technol., vol. 1, no. July, 2020.
  • [44] P. D. Patel and S. N. Pandya, “Energy Regeneration during Deceleration of Direct Torque Control of Induction Motor Drive for Electric Vehicles,” in Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, 2019. doi: 10.1109/ICECCT.2019.8869494.
  • [45] H. B. Ertan, M. S. Siddique, S. Koushan, and B. J. Azuaje-Berbeci, “Designing High Power Density Induction Motors for Electric Propulsion,” in 2022 IEEE 20th International Power Electronics and Motion Control Conference, PEMC 2022, 2022. doi: 10.1109/PEMC51159.2022.9962892.
  • [46] V. K. Pavuluri, X. Wang, J. Long, G. Zhuo, and W. Lian, “Field Oriented Control of Induction Motors Using Symmetrical Optimum Method with Applications in Hybrid Electric Vehicles,” in 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015 - Proceedings, 2015. doi: 10.1109/VPPC.2015.7352948.
  • [47] A. A. Mahapatra and S. Gopalakrishna, “Regenerative braking in induction motor drives in applications to electric vehicles,” in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2014, 2014. doi: 10.1109/SCEECS.2014.6804425.
  • [48] S. Cui, C. Liang, and L. Song, “Study on efficiency calculation model of induction motors for electric vehicles,” in 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, 2008. doi: 10.1109/VPPC.2008.4677791.
  • [49] S. Jose and P. P. Rajeevan, “MTPA Based Direct Torque Control for Energy-Efficient Operation of Induction Motors in Electric Vehicles,” in 2021 IEEE Transportation Electrification Conference, ITEC-India 2021, 2021. doi: 10.1109/ITEC-India53713.2021.9932448.
  • [50] M. Bagheri, E. Farjah, and T. Ghanbari, “Selective Utilized Phase Number of Multiphase Induction Motors Strategy to Enhance Electric Vehicles’ Drive Range,” in 2021 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2021. doi: 10.1109/PEDSTC52094.2021.9405866.
  • [51] T. J. Fu and W. F. Xie, “Torque control of induction motors for hybrid electric vehicles,” in Proceedings of the American Control Conference, 2006. doi: 10.1109/acc.2006.1657668.
  • [52] M. Sowmiya and S. H. Thilagar, “Performance Enhancement of Electric Vehicles using Vector Controlled Multiphase Induction Motor,” in Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, 2018. doi: 10.1109/PEDES.2018.8707930.
  • [53] P. A. Aaliya Farzana and V. R. Bindu, “Regenerative Braking of Switched Reluctance Motor for Electric Vehicle Application,” in SPICES 2022 - IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, 2022. doi: 10.1109/SPICES52834.2022.9774223.
  • [54] Y. Zhu, H. Wu, and C. Zhen, “Regenerative braking control under sliding braking condition of electric vehicles with switched reluctance motor drive system,” Energy, vol. 230, 2021, doi: 10.1016/j.energy.2021.120901.
  • [55] H. Cheng, H. Chen, Q. Wang, S. Xu, and S. Yang, “Design and control of switched reluctance motor drive for electric vehicles,” in 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 2016. doi: 10.1109/ICARCV.2016.7838783.
  • [56] R. M. Abdel-Fadil and L. Számel, “Direct Instantaneous Torque Control of the Switched Reluctance Motor for Electric Vehicles Applications Using Fuzzy Logic Control,” Acta Tech. Jaurinensis, vol. 12, no. 2, 2019, doi: 10.14513/actatechjaur.v12.n2.496.
  • [57] X. Wang et al., “Design of a wide speed range control strategy of switched reluctance motor for electric vehicles,” in 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, 2015. doi: 10.1109/ICInfA.2015.7279301.
  • [58] A. Kumar and B. Singh, “DTC Based Solar fed SRM Drive for Electric Vehicle with Regenerative Braking Employing Zeta Converter,” in 2021 IEEE 6th International Conference on Computing, Communication and Automation, ICCCA 2021, 2021. doi: 10.1109/ICCCA52192.2021.9666314.
  • [59] M. H. Abhiseka and S. Riyadi, “Implementation of Magnetizing-Freewheeling Control Strategy to Increase SRM Regenerative Braking Performance in a Low-Speed Operation,” in ICITEE 2022 - Proceedings of the 14th International Conference on Information Technology and Electrical Engineering, 2022. doi: 10.1109/ICITEE56407.2022.9954116.
  • [60] M. Sun, H. Chen, W. Yan, H. Cheng, and Z. Liu, “Design and Optimization of Switched Reluctance Motor for Propulsion System of Small Electric Vehicle,” in 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, 2016. doi: 10.1109/VPPC.2016.7791657.
  • [61] P. Rafajdus, P. Dubravka, A. Peniak, J. Saitz, and L. Szabóo, “Design procedure of switched reluctance motor used for electric car drive,” in 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, 2014. doi: 10.1109/SPEEDAM.2014.6871986.
  • [62] R. M. Pindoriya, B. S. Rajpurohit, R. Kumar, and K. N. Srivastava, “Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles,” in 2018 IEEMA Engineer Infinite Conference, eTechNxT 2018, 2018. doi: 10.1109/ETECHNXT.2018.8385282.
  • [63] R. Abdel-Fadil and L. Szamel, “Enhancement of the switched reluctance motor performance for electric vehicles applications using predictive current control,” in CANDO-EPE 2018 - Proceedings IEEE International Conference and Workshop in Obuda on Electrical and Power Engineering, 2018. doi: 10.1109/CANDO-EPE.2018.8601168.
  • [64] R. H. S. Vrenken et al., “Switched reluctance motor drive for full electric vehicles - Part I: Analysis,” in 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies, EVER 2013, 2013. doi: 10.1109/EVER.2013.6521605.
  • [65] H. Mashiko and K. Akatsu, “Design of Switched Reluctance Motors for electric hand tools,” in Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016, 2016. doi: 10.1109/ICELMACH.2016.7732733.
  • [66] V. Indragandhi and L. Ashok Kumar, “Artificial intelligence based speed control of SRM for hybrid electric vehicles,” in 2018 8th International Conference on Power and Energy Systems, ICPES 2018, 2018. doi: 10.1109/ICPESYS.2018.8626982.
  • [67] D. Mohanraj et al., “A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications,” IEEE Access, vol. 10, pp. 54833–54869, 2022, doi: 10.1109/ACCESS.2022.3175011.
  • [68] L. Vijayaraja, R. Dhanasekar, K. Harini, T. Hemapriya, S. Subhasri, and R. Kesavan, “Performance Analysis of Electric Vehicle using BLDC Motor Drive,” in 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, May 2023, pp. 1832–1836. doi: 10.1109/ICICCS56967.2023.10142305.
  • [69] Mohd Azri Abd Aziz et al., “A Review on BLDC Motor Application in Electric Vehicle (EV) using Battery, Supercapacitor and Hybrid Energy Storage System: Efficiency and Future Prospects,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 30, no. 2, pp. 41–59, Apr. 2023, doi: 10.37934/araset.30.2.4159.
  • [70] W. Khan-Ngern, W. Keyoonwong, N. Chatsiriwech, P. Sangnopparat, P. Mattayaboon, and P. Worawalai, “High Performance BLDC Motor Control for Electric Vehicle,” in 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), IEEE, Jul. 2018, pp. 1–4. doi: 10.1109/ICEAST.2018.8434499.
  • [71] S. S. Srinivasan, N. R. . Lakshanasri, S. M. Setty, P. Dubey, A. Singh, and S. Senthilmurugan, “BLDC Drive for EV Application,” J. Phys. Conf. Ser., vol. 2007, no. 1, p. 012059, Aug. 2021, doi: 10.1088/1742-6596/2007/1/012059.
  • [72] Lin Bai, “Electric drive system with BLDC motor,” in 2011 International Conference on Electric Information and Control Engineering, IEEE, Apr. 2011, pp. 359–363. doi: 10.1109/ICEICE.2011.5777507.
  • [73] M. AKAR, M. EKER, and F. AKIN, “BLDC Motor Design and Application for Light Electric Vehicle,” Afyon Kocatepe Univ. J. Sci. Eng., Apr. 2021, doi: 10.35414/akufemubid.889877.
  • [74] M. A. Hassanin, F. E. Abdel-Kader, S. I. Amer, and A. E. Abu-Moubarka, “Operation of Brushless DC Motor to Drive the Electric Vehicle,” in 2018 Twentieth International Middle East Power Systems Conference (MEPCON), IEEE, Dec. 2018, pp. 500–503. doi: 10.1109/MEPCON.2018.8635158.
  • [75] P. Vishnu Sidharthan and Y. Kashyap, “Brushless DC Hub Motor Drive Control for Electric Vehicle Applications,” in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), IEEE, Jan. 2020, pp. 448–453. doi: 10.1109/ICPC2T48082.2020.9071469.
  • [76] N. Shrivastava and A. Brahmin, “Design of 3-Phase BLDC Motor for Electric Vehicle Application by Using Finite Element Simulation,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 1, pp. 140–145, 2014.
  • [77] S. Krishnamoorthy and P. P. K. Panikkar, “A comprehensive review of different electric motors for electric vehicles application,” Int. J. Power Electron. Drive Syst., vol. 15, no. 1, p. 74, Mar. 2024, doi: 10.11591/ijpeds.v15.i1.pp74-90.
  • [78] S.-C. Kim, N. Sangam, S. Pagidipala, and S. R. Salkuti, “Design and Analysis of BLDC Motor Driver for Hybrid Electric Vehicles,” 2022, pp. 297–311. doi: 10.1007/978-981-16-7794-6_12.
  • [79] B. Darmono, H. Pranoto, and Z. Arifin, “Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco,” Int. J. Adv. Technol. Mech. Mechatronics Mater., vol. 2, no. 2, pp. 76–86, Nov. 2021, doi: 10.37869/ijatec.v2i2.47.
  • [80] G. S. Lakshmi, O. Rubanenko, M. L. Swarupa, and K. Deepika, “Analysis of ANPCI & DCMLI fed to PMSM Drive for Electric Vehicles,” in 2020 IEEE India Council International Subsections Conference (INDISCON), IEEE, Oct. 2020, pp. 254–259. doi: 10.1109/INDISCON50162.2020.00059.
  • [81] O. E. Özçiflikçi, M. Koç, S. Bahçeci, and S. Emiroğlu, “Overview of PMSM control strategies in electric vehicles: a review,” Int. J. Dyn. Control, vol. 12, no. 6, pp. 2093–2107, Jun. 2024, doi: 10.1007/s40435-023-01314-2.
  • [82] R. Morales-Caporal, M. E. Leal-Lopez, J. de Jesus Rangel-Magdaleno, O. Sandre-Hernandez, and I. Cruz-Vega, “Direct torque control of a PMSM-drive for electric vehicle applications,” in 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), IEEE, Feb. 2018, pp. 232–237. doi: 10.1109/CONIELECOMP.2018.8327204.
  • [83] R. Sinha and H. Misra, “Control of PMSM driven Electric Vehicle for Indian Drive Cycle,” in 2021 National Power Electronics Conference (NPEC), IEEE, Dec. 2021, pp. 01–06. doi: 10.1109/NPEC52100.2021.9672473.
  • [84] U. Gupta, D. K. Yadav, and D. Panchauli, “Field Oriented Control of PMSM during Regenerative Braking,” in 2019 Global Conference for Advancement in Technology (GCAT), IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/GCAT47503.2019.8978361.
  • [85] D. Karboua, T. Belgacem, Z. H. Khan, and C. Kellal, “Robust performance comparison of PMSM for flight control applications in more electric aircraft,” PLoS One, vol. 18, no. 7, p. e0283541, Jul. 2023, doi: 10.1371/journal.pone.0283541.
  • [86] Y. Lu, Z. Jiang, C. Chen, and Y. Zhuang, “Energy efficiency optimization of field-oriented control for PMSM in all electric system,” Sustain. Energy Technol. Assessments, vol. 48, p. 101575, Dec. 2021, doi: 10.1016/j.seta.2021.101575.
  • [87] R. E. K. Meesala, S. Athikkal, P. Pradhan, S. Prasad, and A. Prasad, “Modified Direct Torque Control of PMSM Drive for Electric Vehicle Application,” in 2021 IEEE Madras Section Conference (MASCON), IEEE, Aug. 2021, pp. 1–5. doi: 10.1109/MASCON51689.2021.9563576.
  • [88] K.-M. Choo and J.-H. Lee, “Efficient Regenerative Torque Control Method of PMSM Drive,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), IEEE, Apr. 2021, pp. 1–6. doi: 10.1109/VTC2021-Spring51267.2021.9448693.
  • [89] S. German-Galkin and D. Tarnapowicz, “Optimization of the electric car’s drive system with PMSM,” in 2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY, IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/AUTOMOTIVESAFETY47494.2020.9293514.
  • [90] Y. Wen, H. Zheng, Z. Zhang, J. Huang, X. Zeng, and J. Feng, “Stator Flux Oriented Control of PMSM Applied in Electric Vehicles Traction,” in 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/VPPC46532.2019.8952447.
  • [91] R. Xiao, Z. Wang, H. Zhang, J. Shen, and Z. Chen, “A Novel Adaptive Control of PMSM for Electric Vehicle,” in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, Dec. 2017, pp. 1–8. doi: 10.1109/VPPC.2017.8330877.
  • [92] T. Rudnicki, R. Czerwinski, D. Polok, and A. Sikora, “Performance analysis of a PMSM drive with torque and speed control,” in 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), IEEE, Jun. 2015, pp. 562–566. doi: 10.1109/MIXDES.2015.7208586.
  • [93] D. K. Athanasopoulos, V. I. Kastros, and J. C. Kappatou, “Electromagnetic analysis of a PMSM with different rotor topologies,” in 2016 XXII International Conference on Electrical Machines (ICEM), IEEE, Sep. 2016, pp. 306–312. doi: 10.1109/ICELMACH.2016.7732543.
  • [94] M. Lauerburg, P. Toraktrakul, and K. Hameyer, “Multi-domain analytical rotor model with buried permanent magnets in V-arrangement for high-speed applications,” Arch. Electr. Eng., Jan. 2024, doi: 10.24425/aee.2023.146041.
  • [95] D. Voitekhovskii, “Ultimate Flatness Control Through Advanced Selective Cooling Design and Proactive Maintenance Strategy,” in AISTech 2025 — Proceedings of the Iron & Steel Technology Conference, Association for Iron & Steel Technology, 2025, pp. 1550–1554. doi: 10.33313/389/168.
  • [96] A. Shia, L. Zhang, J. Peng, X. Yan, C. Rong, and J. Zheming, “Lecture Notes in Electrical Engineering,” in International Conference of Electrical, Electronic and Networked Energy Systems, 2024.
  • [97] W. Ma, M. Rong, F. Yang, W. Liu, S. Wang, and G. Li, “Lecture Notes in Electrical Engineering,” in 9th Frontier Academic Forum of Electrical Engineering, 2021.
  • [98] H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno‐Mariani, N. Voyer, and S. Mollov, “Finite element analysis of a modular brushless wound rotor synchronous machine,” J. Eng., vol. 2019, no. 17, pp. 3521–3526, Jun. 2019, doi: 10.1049/joe.2018.8206.
  • [99] D. Rimpas, S. D. Kaminaris, D. D. Piromalis, G. Vokas, K. G. Arvanitis, and C.-S. Karavas, “Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis,” Energies, vol. 16, no. 6, p. 2555, Mar. 2023, doi: 10.3390/en16062555.
  • [100] A. K. Mondal, S. Basak, and C. Chakraborty, “Excitation Control of Brushless Induction Excited Synchronous Motor with Induction Machine Operating in Deep-Plugging Mode,” Power Electron. Drives, vol. 9, no. 1, pp. 257–271, Jan. 2024, doi: 10.2478/pead-2024-0017.
  • [101] V. Dmitrievskii, V. Prakht, E. Valeev, A. Paramonov, V. Kazakbaev, and A. Anuchin, “Comparative Study of Induction and Wound Rotor Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in Wide Constant Power Speed Range,” IEEE Access, vol. 11, pp. 68395–68409, 2023, doi: 10.1109/ACCESS.2023.3292244.
  • [102] J. Wu, X. Zhu, Z. Yang, Z. Xiang, Y. Chen, and L. Quan, “Torque Quality Enhancement Design of an Interior Permanent Magnet Synchronous Motor by Reluctance-Network-Based Topology Optimization,” IEEE Trans. Transp. Electrif., vol. 11, no. 2, pp. 5628–5640, Apr. 2025, doi: 10.1109/TTE.2024.3486447.
  • [103] D. K. Patel and R. P. Mehta, “Modeling and Implementation of Efficient Control for Permanent Magnet Synchronous Motor: A Review,” 2025, pp. 109–134. doi: 10.1007/978-981-96-0104-2_9.
  • [104] K. Selvam, V. Patel, and S. Sahoo, “Impact of Torque Ripple in PMSM on EV Energy Efficiency and Driving Range,” in 2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM), IEEE, Feb. 2025, pp. 1–6. doi: 10.1109/SETCOM64758.2025.10932440.
  • [105] W. Li, P. Huo, and B. Huang, “Optimization Study of Permanent Magnet Synchronous Motor with External Rotor for Robotic Arm Based on Taguchi’s Method,” in 2025 6th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM), IEEE, Apr. 2025, pp. 574–577. doi: 10.1109/ICMTIM65484.2025.11040976.
  • [106] A. K. Moodadla, K. Revathi, M. A. F. Bano, and S. R. Salkuti, “Design of Fuzzy Logic Controller Based BLDC Motor,” 2024, pp. 335–348. doi: 10.1007/978-3-031-18389-8_15.
  • [107] M. Hachem, A. Medero, H. Atoui, and O. Sename, “Modeling and Control of BLDC Motor for Scaled Autonomous Vehicle Application,” 2024, pp. 13–28. doi: 10.1007/978-981-99-6523-6_2.
  • [108] H. Bacem, D. Mehdi, and S. Lassaad, “Control of a Photovoltaic Pumping System with BLDC Motor,” 2024, pp. 359–375. doi: 10.1007/978-981-97-6148-7_35.
  • [109] W. Ding, J. Yang, X. Qiu, W. Hua, L. Hu, and C. Wu, “Research on Torque Ripple Reduction in OW-BLDC Motors with Direct Torque Control,” 2025, pp. 457–464. doi: 10.1007/978-981-97-8820-0_49.
  • [110] S. Ganeriwala, “Induction Motor Diagnostics Using Vibration and Motor Current Signature Analysis,” in Special Topics in Structural Dynamics & Experimental Techniques, Volume 5, New York: River Publishers, 2025, pp. 199–206. doi: 10.1007/978-3-031-37007-6_21.
  • [111] J. Parmar, J. Panchal, T. Jhankal, and A. N. Patel, “Selection of Stator Pole Tip for Torque Ripple Reduction of Switched Reluctance Motor,” in 2024 IEEE 11th Power India International Conference (PIICON), IEEE, Dec. 2024, pp. 1–6. doi: 10.1109/PIICON63519.2024.10995057.
  • [112] H. Taha, G. Barakat, B. Zbib, and F. Chabour, “Comparison Between Axial Flux BLDC and Axial Flux PMSM for High Speed and Low Power Application,” 2025, pp. 179–191. doi: 10.1007/978-3-031-73921-7_15.

Trends in Electric Vehicle Motor Power: A Comparative Study on Performance and Efficiency

Yıl 2025, Cilt: 16 Sayı: 4, 901 - 918, 30.12.2025
https://doi.org/10.24012/dumf.1755155

Öz

Electric vehicles (EVs) have increasingly become central to modern transportation systems due to their advantages in environmental sustainability and energy efficiency. In this development process, electric drive motors play a decisive role in key criteria such as performance, range, energy consumption, and production costs. In this study, three primary motor types commonly used in electric vehicles the Wound Rotor Synchronous Motor (WRSM), Permanent Magnet Synchronous Motor (PMSM), and Induction Motor (IM) are evaluated in a multidimensional manner in terms of their technical performance, energy efficiency, and application segments. Comparative analyses reveal that PMSM motors, in particular, provide an optimal power-to-weight ratio for mid-range vehicles due to their high torque generation and low energy consumption. The compact structure and high efficiency levels of these motors have made them the standard choice for many manufacturers today. On the other hand, WRSM motors offer a strong alternative for long-term sustainability goals by eliminating dependence on rare-earth elements and providing field weakening capability. The high-temperature tolerance, low maintenance requirements, and wide speed range operating capability of WRSM motors indicate their potential for broader adoption in the future. Segment-based evaluations have determined that vehicles in the economic class offer longer range per unit of energy due to lower weight and limited power requirements, representing a significant advantage for compact electric vehicles intended for urban use in terms of energy savings. Conversely, luxury and high-performance segment vehicles demonstrate higher energy consumption despite larger battery capacities; in these segments, factors such as acceleration, traction power, and driving comfort are prioritized over efficiency. The general findings indicate that motor power plays a critical role not only in performance but also in energy consumption, range capacity, and segment-based product positioning. Furthermore, the increasing research and development efforts on alternative motor architectures such as WRSM suggest that these motors may become more attractive both economically and environmentally in the future. In this context, it is recommended that interdisciplinary research on motor technologies be intensified in order to achieve sustainable electric transportation objectives.

Kaynakça

  • [1] F. Kong and X. Liu, “Sustainable Transportation with Electric Vehicles,” Found. Trends Electr. Energy Syst., vol. 2, no. 1, pp. 1–132, 2017, doi: 10.1561/3100000016.
  • [2] “Metropolleri dönüştürmek ulaşımda zafere işaret eder,” Dünya Gazetesi.
  • [3] A. SADIKI, “Control of Permanent Magnet Syncronous Motor in Electric Vehicles,” Yöktez, 2022.
  • [4] A. Dall-Orsoletta, P. Ferreira, and G. Gilson Dranka, “Low-carbon technologies and just energy transition: Prospects for electric vehicles,” Energy Convers. Manag. X, vol. 16, no. May, 2022, doi: 10.1016/j.ecmx.2022.100271.
  • [5] W. J. Sweeting, A. R. Hutchinson, and S. D. Savage, “Factors affecting electric vehicle energy consumption,” Int. J. Sustain. Eng., vol. 4, no. 3, pp. 192–201, 2011, doi: 10.1080/19397038.2011.592956.
  • [6] H. J, A. R. Y, P. S, and A. K. L, “Electric vehicle adoption toward sustainable transportation solution: key drivers and implications,” Int. J. Energy Sect. Manag., 2024, doi: 10.1108/IJESM-04-2024-0015.
  • [7] M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency – A review,” Appl. Energy, vol. 357, p. 122496, Mar. 2024, doi: 10.1016/j.apenergy.2023.122496.
  • [8] Tesla, “Model 3 2024+ owner’s manual,” 2024.
  • [9] Tesla, “Model X 2021-2024 owners manual n.d.”
  • [10] N. Leaf, “Dolu Batarya n.d.”.
  • [11] Türkiye BMW, “Yeni BMW i3 Elektrikli ve Heyecan Verici n.d.”
  • [12] “Audi e-tron.”
  • [13] A. Babangida and P. Szemes, “Electric Vehicle Modeling and Simulation of Volkswagen Crafter with 2.0 TDI CR Diesel Engine,” Rcent Innov Mechatronics 2021, p. 8, doi: 10.17667/riim.2021.1/1.
  • [14] A. Garcia, S. Filipe, C. Fernandes, C. Estevão, and G. Ramos, “The new Taycan and the new Taycan Cross Turismo”.
  • [15] Ford, “Ford Mustang,” 2024.
  • [16] Chevrolet, “Bolt EUV Owners Manual 2022”.
  • [17] Z. Cao, A. Mahmoudi, S. Kahourzade, and W. L. Soong, “An Overview of Electric Motors for Electric Vehicles,” in 2021 31st Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2021, pp. 1–6. doi: 10.1109/AUPEC52110.2021.9597739.
  • [18] M. S. Patil and S. S. Dhamal, “A Detailed Motor Selection for Electric Vehicle Traction System,” 2019 Third Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 679–684, 2019.
  • [19] Z. Qianfan, C. Shumei, and T. Xinjia, “Hybrid Switched Reluctance Motor Applied in Electric Vehicles,” no. 2, pp. 359–363, 2007.
  • [20] Y. Xiao, M. Nemec, L. J. Borle, V. Sreeram, and H. H. C. Iu, “Regenerative braking of series-wound brushed DC electric motors for electric vehicles,” Proc. 2012 7th IEEE Conf. Ind. Electron. Appl. ICIEA 2012, pp. 1657–1662, 2012, doi: 10.1109/ICIEA.2012.6360991.
  • [21] A. Zarma, A. A. Galadima, M. A. Aminu, and E. Engineering, “A Review of Motors for Electric Vehicles,” in International Power Engineering Exhibition & Conference, 2019, pp. 11–14.
  • [22] P. Oy, “Sähköautojen moottorien purku ja kierrätys 2023”.
  • [23] J. Edmondson, S. Siddiqi, and M. Takahashi, “Electric Motors for Electric Vehicles 2025-2035: Technologies, Materials, Markets, and Forecasts,” IDTechEx.
  • [24] A. Gupta, T. Kim, T. Park, and C. Lee, “Intelligent direct torque control of brushless DC motors for hybrid electric vehicles,” in 5th IEEE Vehicle Power and Propulsion Conference, VPPC ’09, 2009. doi: 10.1109/VPPC.2009.5289860.
  • [25] Y. Zhu, X. Cao, and S. Cui, “Design of Brushless DC motor Drive System for Electric Vehicle Applications,” 2016. doi: 10.2991/ameii-16.2016.219.
  • [26] M. C. Joshi and S. Samanta, “Modeling and control of bidirectional DC-DC converter fed PMDC motor for electric vehicles,” in 2013 Annual IEEE India Conference, INDICON 2013, 2013. doi: 10.1109/INDCON.2013.6726091.
  • [27] R. G. Chougale and C. R. Lakade, “Regenerative braking system of electric vehicle driven by brushless DC motor using fuzzy logic,” in IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, 2018. doi: 10.1109/ICPCSI.2017.8392101.
  • [28] N. Hashemnia and B. Asaei, “Comparative study of using different electric motors in the electric vehicles,” in Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08, 2008. doi: 10.1109/ICELMACH.2008.4800157.
  • [29] D. M. B. and M. K. Kazimierczuk, “DC-DC CONVERTERS FOR ELECTRIC VEHiCLE APPLICATIONS,” IEEE Trans. Veh. Technol., vol. 5, no. 4, pp. 1–1, 2018.
  • [30] N. A. Metin, A. Boyar, and E. Kabalci, “Design and Analysis of Bi-directional DC-DC Driver for Electric Vehicles,” in Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 2019. doi: 10.1109/GPECOM.2019.8778532.
  • [31] D. Cajander and H. Le-Huy, “Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation,” Math. Comput. Simul., vol. 71, no. 4–6, pp. 333–344, 2006, doi: 10.1016/j.matcom.2006.02.025.
  • [32] A. T. Waghe and S. K. Patil, “A bidirectional DC-DC converter fed separately excited DC motor electric vehicle application,” in International Conference on Emerging Trends in Information Technology and Engineering, ic-ETITE 2020, 2020. doi: 10.1109/ic-ETITE47903.2020.421.
  • [33] K. Sedef, A. Maheri, A. Daadbin, and M. Yilmaz, “A comparative study of the performance of DC permanent magnet and AC induction motors in urban electric cars,” in 2nd International Symposium on Environment Friendly Energies and Applications, EFEA 2012, 2012. doi: 10.1109/EFEA.2012.6294077.
  • [34] L. Zaccarian, “DC motors : dynamic model and control techniques Magnetic considerations on rotating coils Magnetic field and conductors”.
  • [35] N. Mahajan and S. Deshpande, “Study of Nonlinear Behavior of DC Motor Using,” Int J Sci Res Publ, vol. 3, pp. 1–6, 2013.
  • [36] M. M. Hussain, A. Rashid Mustafa, M. A. Chaudary, and A. Razaq, “Design and Implementation of Hybrid Vehicle using Control of DC Electric Motor,” in 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings, 2019. doi: 10.1109/UPEC.2019.8893604.
  • [37] C. S. Hearn, D. A. Weeks, R. C. Thompson, and D. Chen, “Electric vehicle modeling utilizing DC motor equations,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2010. doi: 10.1109/AIM.2010.5695785.
  • [38] A. Al Mamun, S. Arfin, and S. Khan, “High gain DC-DC converter for three-wheeler electric vehicles,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 - Proceedings, 2021. doi: 10.1109/IEMTRONICS52119.2021.9422579.
  • [39] B. Carson Groen, “Investigation of DC Motors for Electric and Hybrid Electric Motor Vehicle Applications Using an Infinitely Variable Transmission Benjamin,” Brigham Young University, 2011.
  • [40] M. C. Joshi, S. Samanta, and G. Srungavarapu, “Battery ultracapacitor based DC motor drive for electric vehicles,” in TENSYMP 2017 - IEEE International Symposium on Technologies for Smart Cities, 2017. doi: 10.1109/TENCONSpring.2017.8070057.
  • [41] T. Kim, H. W. Lee, L. Parsa, and M. Ehsani, “Optimal power and torque control of a brushless DC (BLDC) motor/generator drive in electric and hybrid electric vehicles,” in Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006. doi: 10.1109/IAS.2006.256695.
  • [42] S. I. Urazov, S. A. Ivanova, and O. I. Khalupo, “The calculation of asynchronous motors characteristics based on the T-shaped equivalent circuit according to catalogued data,” IOP Conf. Ser. Earth Environ. Sci., vol. 949, no. 1, 2022, doi: 10.1088/1755-1315/949/1/012130.
  • [43] H. Gokozan, “Traction Motors and Motors Drivers Used in Electric Vehicles,” Eur. J. Sci. Technol., vol. 1, no. July, 2020.
  • [44] P. D. Patel and S. N. Pandya, “Energy Regeneration during Deceleration of Direct Torque Control of Induction Motor Drive for Electric Vehicles,” in Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, 2019. doi: 10.1109/ICECCT.2019.8869494.
  • [45] H. B. Ertan, M. S. Siddique, S. Koushan, and B. J. Azuaje-Berbeci, “Designing High Power Density Induction Motors for Electric Propulsion,” in 2022 IEEE 20th International Power Electronics and Motion Control Conference, PEMC 2022, 2022. doi: 10.1109/PEMC51159.2022.9962892.
  • [46] V. K. Pavuluri, X. Wang, J. Long, G. Zhuo, and W. Lian, “Field Oriented Control of Induction Motors Using Symmetrical Optimum Method with Applications in Hybrid Electric Vehicles,” in 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015 - Proceedings, 2015. doi: 10.1109/VPPC.2015.7352948.
  • [47] A. A. Mahapatra and S. Gopalakrishna, “Regenerative braking in induction motor drives in applications to electric vehicles,” in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2014, 2014. doi: 10.1109/SCEECS.2014.6804425.
  • [48] S. Cui, C. Liang, and L. Song, “Study on efficiency calculation model of induction motors for electric vehicles,” in 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, 2008. doi: 10.1109/VPPC.2008.4677791.
  • [49] S. Jose and P. P. Rajeevan, “MTPA Based Direct Torque Control for Energy-Efficient Operation of Induction Motors in Electric Vehicles,” in 2021 IEEE Transportation Electrification Conference, ITEC-India 2021, 2021. doi: 10.1109/ITEC-India53713.2021.9932448.
  • [50] M. Bagheri, E. Farjah, and T. Ghanbari, “Selective Utilized Phase Number of Multiphase Induction Motors Strategy to Enhance Electric Vehicles’ Drive Range,” in 2021 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2021. doi: 10.1109/PEDSTC52094.2021.9405866.
  • [51] T. J. Fu and W. F. Xie, “Torque control of induction motors for hybrid electric vehicles,” in Proceedings of the American Control Conference, 2006. doi: 10.1109/acc.2006.1657668.
  • [52] M. Sowmiya and S. H. Thilagar, “Performance Enhancement of Electric Vehicles using Vector Controlled Multiphase Induction Motor,” in Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, 2018. doi: 10.1109/PEDES.2018.8707930.
  • [53] P. A. Aaliya Farzana and V. R. Bindu, “Regenerative Braking of Switched Reluctance Motor for Electric Vehicle Application,” in SPICES 2022 - IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, 2022. doi: 10.1109/SPICES52834.2022.9774223.
  • [54] Y. Zhu, H. Wu, and C. Zhen, “Regenerative braking control under sliding braking condition of electric vehicles with switched reluctance motor drive system,” Energy, vol. 230, 2021, doi: 10.1016/j.energy.2021.120901.
  • [55] H. Cheng, H. Chen, Q. Wang, S. Xu, and S. Yang, “Design and control of switched reluctance motor drive for electric vehicles,” in 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 2016. doi: 10.1109/ICARCV.2016.7838783.
  • [56] R. M. Abdel-Fadil and L. Számel, “Direct Instantaneous Torque Control of the Switched Reluctance Motor for Electric Vehicles Applications Using Fuzzy Logic Control,” Acta Tech. Jaurinensis, vol. 12, no. 2, 2019, doi: 10.14513/actatechjaur.v12.n2.496.
  • [57] X. Wang et al., “Design of a wide speed range control strategy of switched reluctance motor for electric vehicles,” in 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, 2015. doi: 10.1109/ICInfA.2015.7279301.
  • [58] A. Kumar and B. Singh, “DTC Based Solar fed SRM Drive for Electric Vehicle with Regenerative Braking Employing Zeta Converter,” in 2021 IEEE 6th International Conference on Computing, Communication and Automation, ICCCA 2021, 2021. doi: 10.1109/ICCCA52192.2021.9666314.
  • [59] M. H. Abhiseka and S. Riyadi, “Implementation of Magnetizing-Freewheeling Control Strategy to Increase SRM Regenerative Braking Performance in a Low-Speed Operation,” in ICITEE 2022 - Proceedings of the 14th International Conference on Information Technology and Electrical Engineering, 2022. doi: 10.1109/ICITEE56407.2022.9954116.
  • [60] M. Sun, H. Chen, W. Yan, H. Cheng, and Z. Liu, “Design and Optimization of Switched Reluctance Motor for Propulsion System of Small Electric Vehicle,” in 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, 2016. doi: 10.1109/VPPC.2016.7791657.
  • [61] P. Rafajdus, P. Dubravka, A. Peniak, J. Saitz, and L. Szabóo, “Design procedure of switched reluctance motor used for electric car drive,” in 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, 2014. doi: 10.1109/SPEEDAM.2014.6871986.
  • [62] R. M. Pindoriya, B. S. Rajpurohit, R. Kumar, and K. N. Srivastava, “Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles,” in 2018 IEEMA Engineer Infinite Conference, eTechNxT 2018, 2018. doi: 10.1109/ETECHNXT.2018.8385282.
  • [63] R. Abdel-Fadil and L. Szamel, “Enhancement of the switched reluctance motor performance for electric vehicles applications using predictive current control,” in CANDO-EPE 2018 - Proceedings IEEE International Conference and Workshop in Obuda on Electrical and Power Engineering, 2018. doi: 10.1109/CANDO-EPE.2018.8601168.
  • [64] R. H. S. Vrenken et al., “Switched reluctance motor drive for full electric vehicles - Part I: Analysis,” in 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies, EVER 2013, 2013. doi: 10.1109/EVER.2013.6521605.
  • [65] H. Mashiko and K. Akatsu, “Design of Switched Reluctance Motors for electric hand tools,” in Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016, 2016. doi: 10.1109/ICELMACH.2016.7732733.
  • [66] V. Indragandhi and L. Ashok Kumar, “Artificial intelligence based speed control of SRM for hybrid electric vehicles,” in 2018 8th International Conference on Power and Energy Systems, ICPES 2018, 2018. doi: 10.1109/ICPESYS.2018.8626982.
  • [67] D. Mohanraj et al., “A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications,” IEEE Access, vol. 10, pp. 54833–54869, 2022, doi: 10.1109/ACCESS.2022.3175011.
  • [68] L. Vijayaraja, R. Dhanasekar, K. Harini, T. Hemapriya, S. Subhasri, and R. Kesavan, “Performance Analysis of Electric Vehicle using BLDC Motor Drive,” in 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, May 2023, pp. 1832–1836. doi: 10.1109/ICICCS56967.2023.10142305.
  • [69] Mohd Azri Abd Aziz et al., “A Review on BLDC Motor Application in Electric Vehicle (EV) using Battery, Supercapacitor and Hybrid Energy Storage System: Efficiency and Future Prospects,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 30, no. 2, pp. 41–59, Apr. 2023, doi: 10.37934/araset.30.2.4159.
  • [70] W. Khan-Ngern, W. Keyoonwong, N. Chatsiriwech, P. Sangnopparat, P. Mattayaboon, and P. Worawalai, “High Performance BLDC Motor Control for Electric Vehicle,” in 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), IEEE, Jul. 2018, pp. 1–4. doi: 10.1109/ICEAST.2018.8434499.
  • [71] S. S. Srinivasan, N. R. . Lakshanasri, S. M. Setty, P. Dubey, A. Singh, and S. Senthilmurugan, “BLDC Drive for EV Application,” J. Phys. Conf. Ser., vol. 2007, no. 1, p. 012059, Aug. 2021, doi: 10.1088/1742-6596/2007/1/012059.
  • [72] Lin Bai, “Electric drive system with BLDC motor,” in 2011 International Conference on Electric Information and Control Engineering, IEEE, Apr. 2011, pp. 359–363. doi: 10.1109/ICEICE.2011.5777507.
  • [73] M. AKAR, M. EKER, and F. AKIN, “BLDC Motor Design and Application for Light Electric Vehicle,” Afyon Kocatepe Univ. J. Sci. Eng., Apr. 2021, doi: 10.35414/akufemubid.889877.
  • [74] M. A. Hassanin, F. E. Abdel-Kader, S. I. Amer, and A. E. Abu-Moubarka, “Operation of Brushless DC Motor to Drive the Electric Vehicle,” in 2018 Twentieth International Middle East Power Systems Conference (MEPCON), IEEE, Dec. 2018, pp. 500–503. doi: 10.1109/MEPCON.2018.8635158.
  • [75] P. Vishnu Sidharthan and Y. Kashyap, “Brushless DC Hub Motor Drive Control for Electric Vehicle Applications,” in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), IEEE, Jan. 2020, pp. 448–453. doi: 10.1109/ICPC2T48082.2020.9071469.
  • [76] N. Shrivastava and A. Brahmin, “Design of 3-Phase BLDC Motor for Electric Vehicle Application by Using Finite Element Simulation,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 1, pp. 140–145, 2014.
  • [77] S. Krishnamoorthy and P. P. K. Panikkar, “A comprehensive review of different electric motors for electric vehicles application,” Int. J. Power Electron. Drive Syst., vol. 15, no. 1, p. 74, Mar. 2024, doi: 10.11591/ijpeds.v15.i1.pp74-90.
  • [78] S.-C. Kim, N. Sangam, S. Pagidipala, and S. R. Salkuti, “Design and Analysis of BLDC Motor Driver for Hybrid Electric Vehicles,” 2022, pp. 297–311. doi: 10.1007/978-981-16-7794-6_12.
  • [79] B. Darmono, H. Pranoto, and Z. Arifin, “Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco,” Int. J. Adv. Technol. Mech. Mechatronics Mater., vol. 2, no. 2, pp. 76–86, Nov. 2021, doi: 10.37869/ijatec.v2i2.47.
  • [80] G. S. Lakshmi, O. Rubanenko, M. L. Swarupa, and K. Deepika, “Analysis of ANPCI & DCMLI fed to PMSM Drive for Electric Vehicles,” in 2020 IEEE India Council International Subsections Conference (INDISCON), IEEE, Oct. 2020, pp. 254–259. doi: 10.1109/INDISCON50162.2020.00059.
  • [81] O. E. Özçiflikçi, M. Koç, S. Bahçeci, and S. Emiroğlu, “Overview of PMSM control strategies in electric vehicles: a review,” Int. J. Dyn. Control, vol. 12, no. 6, pp. 2093–2107, Jun. 2024, doi: 10.1007/s40435-023-01314-2.
  • [82] R. Morales-Caporal, M. E. Leal-Lopez, J. de Jesus Rangel-Magdaleno, O. Sandre-Hernandez, and I. Cruz-Vega, “Direct torque control of a PMSM-drive for electric vehicle applications,” in 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), IEEE, Feb. 2018, pp. 232–237. doi: 10.1109/CONIELECOMP.2018.8327204.
  • [83] R. Sinha and H. Misra, “Control of PMSM driven Electric Vehicle for Indian Drive Cycle,” in 2021 National Power Electronics Conference (NPEC), IEEE, Dec. 2021, pp. 01–06. doi: 10.1109/NPEC52100.2021.9672473.
  • [84] U. Gupta, D. K. Yadav, and D. Panchauli, “Field Oriented Control of PMSM during Regenerative Braking,” in 2019 Global Conference for Advancement in Technology (GCAT), IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/GCAT47503.2019.8978361.
  • [85] D. Karboua, T. Belgacem, Z. H. Khan, and C. Kellal, “Robust performance comparison of PMSM for flight control applications in more electric aircraft,” PLoS One, vol. 18, no. 7, p. e0283541, Jul. 2023, doi: 10.1371/journal.pone.0283541.
  • [86] Y. Lu, Z. Jiang, C. Chen, and Y. Zhuang, “Energy efficiency optimization of field-oriented control for PMSM in all electric system,” Sustain. Energy Technol. Assessments, vol. 48, p. 101575, Dec. 2021, doi: 10.1016/j.seta.2021.101575.
  • [87] R. E. K. Meesala, S. Athikkal, P. Pradhan, S. Prasad, and A. Prasad, “Modified Direct Torque Control of PMSM Drive for Electric Vehicle Application,” in 2021 IEEE Madras Section Conference (MASCON), IEEE, Aug. 2021, pp. 1–5. doi: 10.1109/MASCON51689.2021.9563576.
  • [88] K.-M. Choo and J.-H. Lee, “Efficient Regenerative Torque Control Method of PMSM Drive,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), IEEE, Apr. 2021, pp. 1–6. doi: 10.1109/VTC2021-Spring51267.2021.9448693.
  • [89] S. German-Galkin and D. Tarnapowicz, “Optimization of the electric car’s drive system with PMSM,” in 2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY, IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/AUTOMOTIVESAFETY47494.2020.9293514.
  • [90] Y. Wen, H. Zheng, Z. Zhang, J. Huang, X. Zeng, and J. Feng, “Stator Flux Oriented Control of PMSM Applied in Electric Vehicles Traction,” in 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/VPPC46532.2019.8952447.
  • [91] R. Xiao, Z. Wang, H. Zhang, J. Shen, and Z. Chen, “A Novel Adaptive Control of PMSM for Electric Vehicle,” in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, Dec. 2017, pp. 1–8. doi: 10.1109/VPPC.2017.8330877.
  • [92] T. Rudnicki, R. Czerwinski, D. Polok, and A. Sikora, “Performance analysis of a PMSM drive with torque and speed control,” in 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), IEEE, Jun. 2015, pp. 562–566. doi: 10.1109/MIXDES.2015.7208586.
  • [93] D. K. Athanasopoulos, V. I. Kastros, and J. C. Kappatou, “Electromagnetic analysis of a PMSM with different rotor topologies,” in 2016 XXII International Conference on Electrical Machines (ICEM), IEEE, Sep. 2016, pp. 306–312. doi: 10.1109/ICELMACH.2016.7732543.
  • [94] M. Lauerburg, P. Toraktrakul, and K. Hameyer, “Multi-domain analytical rotor model with buried permanent magnets in V-arrangement for high-speed applications,” Arch. Electr. Eng., Jan. 2024, doi: 10.24425/aee.2023.146041.
  • [95] D. Voitekhovskii, “Ultimate Flatness Control Through Advanced Selective Cooling Design and Proactive Maintenance Strategy,” in AISTech 2025 — Proceedings of the Iron & Steel Technology Conference, Association for Iron & Steel Technology, 2025, pp. 1550–1554. doi: 10.33313/389/168.
  • [96] A. Shia, L. Zhang, J. Peng, X. Yan, C. Rong, and J. Zheming, “Lecture Notes in Electrical Engineering,” in International Conference of Electrical, Electronic and Networked Energy Systems, 2024.
  • [97] W. Ma, M. Rong, F. Yang, W. Liu, S. Wang, and G. Li, “Lecture Notes in Electrical Engineering,” in 9th Frontier Academic Forum of Electrical Engineering, 2021.
  • [98] H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno‐Mariani, N. Voyer, and S. Mollov, “Finite element analysis of a modular brushless wound rotor synchronous machine,” J. Eng., vol. 2019, no. 17, pp. 3521–3526, Jun. 2019, doi: 10.1049/joe.2018.8206.
  • [99] D. Rimpas, S. D. Kaminaris, D. D. Piromalis, G. Vokas, K. G. Arvanitis, and C.-S. Karavas, “Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis,” Energies, vol. 16, no. 6, p. 2555, Mar. 2023, doi: 10.3390/en16062555.
  • [100] A. K. Mondal, S. Basak, and C. Chakraborty, “Excitation Control of Brushless Induction Excited Synchronous Motor with Induction Machine Operating in Deep-Plugging Mode,” Power Electron. Drives, vol. 9, no. 1, pp. 257–271, Jan. 2024, doi: 10.2478/pead-2024-0017.
  • [101] V. Dmitrievskii, V. Prakht, E. Valeev, A. Paramonov, V. Kazakbaev, and A. Anuchin, “Comparative Study of Induction and Wound Rotor Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in Wide Constant Power Speed Range,” IEEE Access, vol. 11, pp. 68395–68409, 2023, doi: 10.1109/ACCESS.2023.3292244.
  • [102] J. Wu, X. Zhu, Z. Yang, Z. Xiang, Y. Chen, and L. Quan, “Torque Quality Enhancement Design of an Interior Permanent Magnet Synchronous Motor by Reluctance-Network-Based Topology Optimization,” IEEE Trans. Transp. Electrif., vol. 11, no. 2, pp. 5628–5640, Apr. 2025, doi: 10.1109/TTE.2024.3486447.
  • [103] D. K. Patel and R. P. Mehta, “Modeling and Implementation of Efficient Control for Permanent Magnet Synchronous Motor: A Review,” 2025, pp. 109–134. doi: 10.1007/978-981-96-0104-2_9.
  • [104] K. Selvam, V. Patel, and S. Sahoo, “Impact of Torque Ripple in PMSM on EV Energy Efficiency and Driving Range,” in 2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM), IEEE, Feb. 2025, pp. 1–6. doi: 10.1109/SETCOM64758.2025.10932440.
  • [105] W. Li, P. Huo, and B. Huang, “Optimization Study of Permanent Magnet Synchronous Motor with External Rotor for Robotic Arm Based on Taguchi’s Method,” in 2025 6th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM), IEEE, Apr. 2025, pp. 574–577. doi: 10.1109/ICMTIM65484.2025.11040976.
  • [106] A. K. Moodadla, K. Revathi, M. A. F. Bano, and S. R. Salkuti, “Design of Fuzzy Logic Controller Based BLDC Motor,” 2024, pp. 335–348. doi: 10.1007/978-3-031-18389-8_15.
  • [107] M. Hachem, A. Medero, H. Atoui, and O. Sename, “Modeling and Control of BLDC Motor for Scaled Autonomous Vehicle Application,” 2024, pp. 13–28. doi: 10.1007/978-981-99-6523-6_2.
  • [108] H. Bacem, D. Mehdi, and S. Lassaad, “Control of a Photovoltaic Pumping System with BLDC Motor,” 2024, pp. 359–375. doi: 10.1007/978-981-97-6148-7_35.
  • [109] W. Ding, J. Yang, X. Qiu, W. Hua, L. Hu, and C. Wu, “Research on Torque Ripple Reduction in OW-BLDC Motors with Direct Torque Control,” 2025, pp. 457–464. doi: 10.1007/978-981-97-8820-0_49.
  • [110] S. Ganeriwala, “Induction Motor Diagnostics Using Vibration and Motor Current Signature Analysis,” in Special Topics in Structural Dynamics & Experimental Techniques, Volume 5, New York: River Publishers, 2025, pp. 199–206. doi: 10.1007/978-3-031-37007-6_21.
  • [111] J. Parmar, J. Panchal, T. Jhankal, and A. N. Patel, “Selection of Stator Pole Tip for Torque Ripple Reduction of Switched Reluctance Motor,” in 2024 IEEE 11th Power India International Conference (PIICON), IEEE, Dec. 2024, pp. 1–6. doi: 10.1109/PIICON63519.2024.10995057.
  • [112] H. Taha, G. Barakat, B. Zbib, and F. Chabour, “Comparison Between Axial Flux BLDC and Axial Flux PMSM for High Speed and Low Power Application,” 2025, pp. 179–191. doi: 10.1007/978-3-031-73921-7_15.
Toplam 112 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Ahmet Orhan 0000-0003-1994-4661

Sencer Ünal 0000-0001-5990-933X

Ayhan Akbal 0000-0003-4820-3563

Kıvanç Doğan 0000-0003-4832-1412

Murat Kayaoğlu 0009-0004-1327-012X

Hilal Biyik 0009-0007-1816-6868

Gönderilme Tarihi 31 Temmuz 2025
Kabul Tarihi 22 Eylül 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

IEEE A. Orhan, S. Ünal, A. Akbal, K. Doğan, M. Kayaoğlu, ve H. Biyik, “Trends in Electric Vehicle Motor Power: A Comparative Study on Performance and Efficiency”, DÜMF MD, c. 16, sy. 4, ss. 901–918, 2025, doi: 10.24012/dumf.1755155.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456