Günümüzde depreme dayanıklı yapı tasarımı genellikle dayanım ve yer değiştirme esaslı yöntemlerle
gerçekleştirilmektedir. Dayanım esaslı tasarım yöntemlerinde, dış yükler altında taşıyıcı sistem
elemanlarında oluşacak iç kuvvetlerin elemanların taşıma gücünü aşmaması gerekmektedir. Yer değiştirme
esaslı yöntemlerde, deprem etkisi altındaki yapının aşırı yatay yer değiştirme yapmasının önlenmesi
amaçlanmaktadır. Enerji esaslı yöntemlerde ise hedeflenen durum; depremle birlikte yapı sistemine giren
toplam enerjinin, taşıyıcı sistem elemanlarının doğrusal olmayan davranışı sonucu tüketilebilmesi ve yapının
toptan göçme yapmadan ayakta kalabilmesidir.
Çalışmada, yapı kat seviyelerinde yazılan enerji denklemlerinden yola çıkılarak, 2007 Türk Deprem
Yönetmeliğine göre ön boyutlandırması yapılan çok katlı çelik çerçeve yapıların, seçilen göçme
mekanizmasına ve öngörülen farklı kat yatay yer değiştirmelerine göre tasarımı yapılmıştır. Enerji esaslı
çelik çerçeve tasarımında kat yatay yer değiştirmelerinin etkisi araştırılmıştır. Farklı performans
seviyelerine karşılık gelen farklı göreli kat ötelenmesi oranlarının, dolayısıyla farklı kat yatay yer
değiştirmelerinin seçilmesi ile çelik taşıyıcı sistem boyutlarındaki değişim gözlenmiştir. Tasarımda
hedeflenen kat yatay yer değiştirmeleri, doğrusal olmayan statik artımsal itme analizi ve seçilen deprem
kayıtları için gerçekleştirilen zaman tanım alanında dinamik analizlerin sonuçları ile karşılaştırılmıştır.
Hedeflenen kat yatay yer değiştirmesinin artması ile birlikte, taşıyıcı sistemi oluşturan çelik profillerin
boyutlarında azalma meydana geldiği görülmüştür. Beş katlı çelik çerçevelerin doğrusal olmayan statik
analizi ve zaman tanım alanında dinamik analizleri sonucunda elde edilen kat yatay yer değiştirmesi
değerlerinin, enerjiye dayalı tasarım yönteminin başlangıcında öngörülen değerleri aşmadığı gözlenmiştir.
Earthquake-resistant design methods for the
structures are generally force-based and
displacement-based. In the force-based methods;
internal forces must not exceed the bearing capacity
of the structural members under external forces. It is
aimed that excessive displacement of the structure
under earthquake effects must be prevented in the
displacement-based design methods. In the energybased
methods; earthquake input energy must be
consumed in the structural members with the
nonlinear behavior and as a result the structure
must remain stable without collapsing.
In the study, multi-story steel frames, which are
predesigned by considering the Turkish Seismic
Design Code (2007), are redesigned according to
the different predefined sway displacements and
selected yield mechanism using the energy equations
which are written at each story level. The effect of
sway displacements on the energy-based design of
steel frame is studied. The variations in the
dimensions of the steel structural systems are
searched by choosing different interstory drift ratios
in connection with the different sway displacements
which correspond to different performance levels.
The sway target displacements in the design are
compared with the displacement results of the
nonlinear static pushover analysis and dynamic time
history analyses for chosen earthquake records.
Dimensions of the steel profiles that constitute the
structural system of the frames decrease with
increasing target displacement of the story. It is
observed that the sway displacement results of the
nonlinear static pushover analyses and dynamic
time history analyses do not exceed the target
displacement limits which are defined at the
beginning of the energy-based design.
The design method in the study is for the design of
new structures. It is accepted in the study that the
stored energy to the steel structures under the effect
of an earthquake is calculated using Housner’s input
energy equation. Housner’s total input energy is
expressed as the sum of the elastic and plastic
energies assuming the total energy is consumed by
the linear elastic and nonlinear behavior of the
structural system. The elastic energy of the system is
defined by Akiyama’s elastic energy equation. The
plastic energy of the system is obtained from
Housner’s total input energy and Akiyama’s elastic
energy. The plastic energy equation is obtained by
subtracting the elastic energy from the total input
energy of the system. Then the plastic energy is
obtained again by equating the external and internal
works of the plastic hinges of the system. Plastic
energies which are defined by different approaches
are equated to each other. Energy-based base shear
force of the system is obtained from the equation of
the plastic energies. Energy-based base shear force
expression that is obtained within the study depends
on the properties such as yield mechanism, story
displacements, period of vibration and story heights,
story numbers and story weights of the structures.
The effect of story displecements in the energy-based
base shear force equation is expressed in terms of
interstory drift ratios. After calculating the energybased
base shear, beam and column design are
performed according to the plastic design concept.
Beams are designed writing energy balance
equation in the story beam levels. Then columns are
designed according to combined both the axial force
and bending moment values. In the study, European
Norm Profiles are chosen for the steel structural
system. Five-story regular steel frames with two
bays and three meters story heights are designed
taking 1.5%, 2% and 3.5% interstory drift ratios. It
is assumed that there is a 30 kN/m total uniformly
distributed load in all spans.
As a conclusion, the effect of story displacements on
the energy-based structural design is searched
within the study. Taking different interstory drift
ratios or indirectly different story displacements,
different base shears are calculated in the design.
So; different steel profile dimensions are obtained
for different story displacements. Steel profile
dimensions decrease with increasing the story
displacement values. Nonlinear static pushover
analyses and dynamic time history analyses are used
to check the results of the energy-based design
method. It is seen from the results of nonlinear static
analyses and time history analyses for the chosen
earthquake effects that the predefined story
displacements or interstory drift ratios at the
beginning of the energy-based design are not
exceeded.
Diğer ID | JA86NN97SH |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Aralık 2011 |
Gönderilme Tarihi | 1 Aralık 2011 |
Yayımlandığı Sayı | Yıl 2011 Cilt: 2 Sayı: 2 |