Bu çalışmada, sağlıklı ve nöbet esnasındaki EEG sinyallerini ayrıştıran bir sistem tasarımı amaçlanmıştır.
Bunun için İlinti Boyutu, Dalgacık-entropisi ve Destek Vektör Makinesi(DVM) içeren kompozit bir sistem
önerilmiştir. Çalışmada kullanılan EEG verileri, Bonn Üniversitesi Epileptoloji bölümü veritabanından
alınmıştır. Bu veritabanından 50 adet sağlıklı ve 50 adet epileptik olmak üzere toplam 100 adet EEG bölütü
kullanılmıştır. Bu bölütlere kaotik yöntemlerin uygulanabilmesi için öncelikle faz uzayları oluşturulmuştur.
Faz uzayları üzerinden İlinti Boyutu değerleri hesaplanmıştır. Dalgacık analizi ile EEG bölütleri, literatürde
standart olarak belirlenen alt-bantlara; delta=(0.5-4Hz), teta=(4-8Hz), alfa=(8-12Hz) ve beta=(12-32Hz)
ayrıştırılmıştır. Bu bantlarda elde edilen EEG spektral bileşenlerin normalize enerjileri alınıp Shannon
entropi’leri hesaplanmıştır.
Sağlıklı ve epileptik EEG sinyallerinden özellik çıkarmak için ilinti boyutu analizinden elde edilen özgün veri
ve dalgacık-entropi analizinden elde edilen özgün veriler (4 adet alt bant entropi’leri) DVM’nin girişine
verilmek üzere her bir EEG bölütü için 5’li bir öznitelik vektörü oluşturulmuştur. Elde edilen tüm öznitelik
vektörlerinin sınıflandırılması için DVM kullanılmıştır. DVM sağlıklı ve epileptik olmak üzere toplam 50
EEG bölütü ile eğitilmiş ve geriye kalan 50 bölütle de test yapılmıştır. Sağlıklı ve epileptik EEG bölütlerinin
hesaplanan ilinti boyutları ve dalgacık entropilerinin sınıflandırmada ayırt edici olduğu görülmüştür.
Başarım değerlendirme ölçütleri kullanılarak önerilen kompozit sistemin %98 gibi bir başarı ile
sınıflandırma yapabildiği tespit edilmiştir.
EEG Epileptik ataklar İlinti boyutu Dalgacık entropisi Destek Vektör Makinesi Sınıflandırma.
Objective of this study was to design a system for
classifying Epileptic and normal EEG signals. For
this purpose, a system composed of correlation
dimension, wavelet-entropy and Support Vector
Machine was proposed.
Epilepsy is a neurological disorder which can be
seen all over the world. It can be diagnosed by
brain’s electrical activity. The determination of
epileptic attacks or seizures by
Electroencephalogram (EEG) signals is quite
common in both clinical and research fields.
Because EEG signals are non-stationary signals,
they must be examined with the nonlinear analysis
methods.
For the analysis of a chaotic signal or system, first
of all, a trajectory of the attractor which represents
the system, and depicts all states the systems acquire
in the course of time must be created on the phase
space. Provided that time series is the output of a
chaotic system, the trajectory created on the phase
space is anticipated to display a regular structure at
times, and random at the other. It cannot be
estimated in advance when and how long the
trajectory is regular or random. However, some
methods quantifying the degree of chaoticity of the
system have been developed. With these methods,
calculations are made using the trajectory created
on the phase space by the system and the degree of
chaoticity is quantitatively determined. Each method
reflects chaoticity of the systems in different ways. In
other words, each quantity obtained from the system
defines a different feature vector. The excessive
number of feature vectors means better recognition
of the system. Since that means more parameters,
the processing load also increases.
In the Literature, the Lyapunov exponents, the
correlation dimension and the entropy, are widely
used for analysis of the chaotic time series or
systems. In addition, time-frequency techniques
can be used to analyze this kind of signals and
systems.
Support Vector Machines (SVM) is one of the
methods commonly used in classification. SVM tries
to find the most appropriate plane (hyperplane)
separating the two classes.
EEG data used in this study have been acquired
from the database of University of Bonn,
Department of Epileptology. From this database,
100 EEG segments (50 healthy and 50 epileptic
segments) have been used. To apply chaotic methods
to these segments, phase spaces have primarily been
created, and then the Correlation Dimension values
have been measured.
In this study, the normal and the epileptic EEG
signals were examined. First of all, the correlation
dimension of both the normal and the epileptic EEG
signals were measured. All of the EEG signals have
been separated into the standard subbands which
are: delta=(0.5-4Hz), theta=(4-8Hz), alpha=8-12Hz
and beta=(12-32Hz). Then, the Shannon entropies of
the EEG subbands are calculated; and then the
feature vectors are formed by combining the values
obtained with both methods. Finally, all the feature
vectors are classified with SVM.
SVM was trained with 50 EEG segments in
total, composed of 25 healthy and 25 epileptic
EEG segments, and a test was conducted with
the remaining 50 segments. The measured
correlation dimensions and wavelet entropies of
EEG segments were detected to be distinctive in
classification. The composite system that was
proposed using performance evaluation criteria
showed a 98 % success rate in classification.
Diğer ID | JA85VC79BD |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Haziran 2013 |
Gönderilme Tarihi | 1 Haziran 2013 |
Yayımlandığı Sayı | Yıl 2013 Cilt: 4 Sayı: 1 |