Bu çalışmada, görsel-işitsel uyaranlar kaynaklı oluşan farklı duygu durumlarına ilişkin EEG işaretlerinin
sınıflandırılması amaçlanmıştır. Katılımcıların duygu durumlarını belirlemek için kişisel değerlendirme
modeli (SAM, Self Assessment Manikins) görselleri kullanılmıştır. Katılımcılar, kendilerine sunulan görselişitsel
uyaranları değerlik, baskınlık, aktivasyon ve beğenme açısından değerlendirmişlerdir. Bu
değerlendirmelere göre katılımcıların pozitif ve negatif duygu durumlarına ilişkin EEG işaretleri
sınıflandırılmıştır. EEG işaretlerinden ayrık dalgacık dönüşümü (ADD) kullanılarak öznitelik çıkarımı
yapılmıştır. ADD kullanılarak elde edilen öznitelik vektör boyutlarının azaltılması için istatistiksel işlemler
uygulanmıştır. Sınıflandırıcı olarak ise yapay sinir ağları (YSA) uygulanmıştır. YSA ilk olarak kanal tespiti
için kullanılmıştır. Böylelikle, en iyi sınıflandırma performansı sunan EEG kanalları tespit edilmiştir. Tespit
edilen EEG kanallarının öznitelikleri birleştirilerek, nihai öznitelik vektörleri elde edilmiştir. Farklı duygu
durumları için elde edilen nihai öznitelik vektörleri YSA ile sınıflandırılmıştır. Önerilen bütün işlemler, her
katılımcı için ayrı bir şekilde uygulanmıştır. Sınıflandırma işlemi sonunda maksimum sınıflandırma
doğruluğu %90 ve 20 katılımcı için ortalama sınıflandırma doğruluğu ise %76.25 olarak elde edildiği
görülmüştür.
Emotions play an important role in communication
between humans. Emotions can be expressed by
words, voice intonation, facial expression and body
language. In contrast, Brain Computer Interface
(BCI) systems have not reached the desired level to
interpret the people’s emotions.
BCI systems need new resources that can be taken
from humans and processed by these systems to
understand emotions. Electroencephalogram (EEG)
signals is one of the most important resources to
achieve this target. EEG signal is the method that
measures brain waves with the electrical signals of
the monitoring activities. Frequency component of
the EEG signals contain important information about
brain activity.
The aim of this study was to classify EEG signals
related to negative and positive emotions based on
audio-visual stimulus. SAM (Self Assessment
Manikins) was used to determine participants’
emotional states. Participants rated each audiovisual
stimulus in terms of the level of valence,
arousal, like/dislike and dominance. Participants
reported the dimension of their emotions in
numerical values from 1 to 9 in decimal form. In this
study, only valence assessments of participants were
taken into account. Participants made their valence
ratings in 1-9 range. 1 corresponds to completely
unhappy; 9 correspond to completely happy
emotion. In this study, assessments below 5 are
accepted as negative emotion and assessments
above 5 are accepted as positive emotion based on
valence rating.
Discrete wavelet transform (DWT) was used for
feature extraction from EEG signals related to
negative and positive emotions. DWT decompose a
signal into detail and approximation sub-bands.
The docomposition of the signal into sub-bands is
obtained by consecutive high-pass and low pass
filtering of the time domain signal. In this study,
since theta band dinamics of EEG signals were
considered to classify different emotions based on
audio-visual stimulus, the number of decomposition
levels was chosen as 4. Dabuechies wavelets have
provided useful results in analyzing EEG signals.
Hence, daubechies wavelet of order 2 (db2) was
chosen in this study.
Wavelet coefficients contain important information
about the characteristics of the relevant signals, the
wavelet coefficients of EEG signals were assumed as
feature vectors and statistical features were used to
reduce dimension of feature vector.
In this study, different clusters consisting of EEG
signals related to positive and negative emotions
groups have been classified by artificial neural
network (ANN). Firstly, ANN was used to obtain
final feature vectors. For each participant, EEG
channels offering the best classification performance
were determined. it was observed that 5 EEG
channels that offer the best classification
performance for each participant are respectively
P3, FC2, AF3, O1 and Fp1.
The features vectors of these EEG channels that
offer the best classification performance were
composed to obtained the final feature vectors. The
classification procedures have been carried out for
20 participants. The maximum classification
accuracy was found as 90% and average
classification accuracy was found as 76.5% by using
ANN classification algorithm for 20 participants.
Diğer ID | JA65VH76SN |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Haziran 2016 |
Gönderilme Tarihi | 1 Haziran 2016 |
Yayımlandığı Sayı | Yıl 2016 Cilt: 7 Sayı: 1 |